-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog.py
137 lines (82 loc) · 3.68 KB
/
log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from typing import List, Dict
import torch
import numpy as np
import os
import cv2
class Logger():
def __init__(self, run_name: str) -> None:
""" Logger: Base class for all training loggers. Such a logger handles all the logging of loss values, images etc.
Parameters
----------
run_name : str
Name of the current experiment run.
"""
self.log_dir = 'logs'
self.run_name = run_name
self.mode = 'training'
self.epoch = 0
self.global_step = 0
def set_mode(self, mode: str) -> None:
self.mode = mode
def set_epoch(self, epoch: int) -> None:
self.epoch = epoch
def new_epoch(self) -> None:
self.epoch += 1
def new_step(self) -> None:
self.global_step += 1
def log_losses(self, loss_dict: Dict[str, torch.Tensor]) -> None:
raise NotImplementedError
def log_images(self, img_batch: torch.Tensor, name: str, dataformats: str = 'NCHW') -> None:
raise NotImplementedError
class DirectoryLogger(Logger):
def __init__(self, run_name) -> None:
super(DirectoryLogger, self).__init__(run_name)
def log_losses(self, loss_dict: Dict[str, torch.Tensor]) -> None:
pass
def log_images(self, img_batch: torch.Tensor, name: str, dataformats: str = 'NCHW') -> None:
if torch.is_tensor(img_batch):
img_batch = img_batch.detach().cpu().numpy()
if dataformats =='NCHW':
img_batch = img_batch.transpose(0, 2, 3, 1)
for img in img_batch:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
epoch_dir = os.path.join(self.log_dir, self.run_name, self.mode, 'images', str(self.epoch))
if not os.path.isdir(epoch_dir):
os.makedirs(epoch_dir)
cv2.imwrite(os.path.join(epoch_dir, f'{name}.png'), img)
class TensorboardLogger(Logger):
def __init__(self, run_name) -> None:
super(TensorboardLogger, self).__init__(run_name)
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(log_dir=os.path.join(self.log_dir, self.run_name))
def log_losses(self, loss_dict: Dict[str, torch.Tensor]) -> None:
for loss_name in loss_dict:
if torch.is_tensor(loss_dict[loss_name]):
loss_dict[loss_name] = loss_dict[loss_name].detach().cpu().numpy()
self.writer.add_scalars(self.mode, loss_dict, self.global_step)
def log_images(self, img_batch: torch.Tensor, name: str, dataformats: str = 'NCHW') -> None:
if torch.is_tensor(img_batch):
img_batch = img_batch.detach().cpu().numpy()
self.writer.add_images(f'{self.mode}/{self.epoch}/{name}', img_batch, self.global_step, dataformats=dataformats)
class MergedLogger(Logger):
def __init__(self, run_name, logger_types) -> None:
super(MergedLogger, self).__init__(run_name)
self.loggers = [logger_type(run_name) for logger_type in logger_types]
def set_mode(self, mode: str):
for logger in self.loggers:
logger.set_mode(mode)
def set_epoch(self, epoch: int) -> None:
for logger in self.loggers:
logger.set_epoch(epoch)
def new_epoch(self):
for logger in self.loggers:
logger.new_epoch()
def new_step(self):
for logger in self.loggers:
logger.new_step()
def log_losses(self, loss_dict: Dict[str, torch.Tensor]) -> None:
for logger in self.loggers:
logger.log_losses(loss_dict)
def log_images(self, img_batch: torch.Tensor, name: str, dataformats: str = 'NCHW') -> None:
for logger in self.loggers:
logger.log_images(img_batch, name, dataformats)