-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_training.py
125 lines (102 loc) · 4.83 KB
/
model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import cv2
import numpy as np
import tensorflow as tf
# Set a threshold for model accuracy (efficiency score)
ACCURACY_THRESHOLD = 0.85 # Example: 85% accuracy threshold
# Main loop
cap = cv2.VideoCapture(0)
# Function to create CNN model
def create_cnn_model():
try:
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
except Exception as e:
print(f"Error in creating CNN model: {e}")
return None
# Load and preprocess dataset (updated with label mapping)
def load_dataset(path):
try:
image_size = (64, 64) # Define the image size (same as expected by CNN)
images = []
labels = []
# Map string labels to integers
label_mapping = {'Closed': 0, 'Opened': 1} # Modify as needed
# Loop through each folder in the dataset directory
for label_folder in os.listdir(path):
label_folder_path = os.path.join(path, label_folder)
if not os.path.isdir(label_folder_path):
continue # Skip if not a directory
# Map the folder name (label) to an integer using the label_mapping dictionary
if label_folder in label_mapping:
label = label_mapping[label_folder]
else:
print(f"Warning: Label '{label_folder}' not in label_mapping. Skipping...")
continue # Skip if the label is not in the mapping
# Loop through each image in the folder
for image_name in os.listdir(label_folder_path):
image_path = os.path.join(label_folder_path, image_name)
# Load the image using OpenCV
image = cv2.imread(image_path)
if image is None:
print(f"Warning: Unable to load image: {image_path}")
continue
# Resize the image to the expected size
image_resized = cv2.resize(image, image_size)
# Normalize the image by scaling pixel values to [0, 1]
image_resized = image_resized.astype('float32') / 255.0
# Append image and label to respective lists
images.append(image_resized)
labels.append(label)
# Convert lists to NumPy arrays
images = np.array(images)
labels = np.array(labels)
return images, labels
except Exception as e:
print(f"Error in loading dataset: {e}")
return None, None
# Load and preprocess training dataset
train_images, train_labels = load_dataset("models/ddd_dataset/TrainingSet")
if train_images is None or train_labels is None:
print("Failed to load training dataset. Exiting...")
cap.release()
cv2.destroyAllWindows()
exit()
# Train the model
model = create_cnn_model()
if model is None:
print("Failed to create CNN model. Exiting...")
cap.release()
cv2.destroyAllWindows()
exit()
# Train the model with the entire training set (no splitting)
model.fit(train_images, train_labels, epochs=10)
# Load the improvement dataset (for model improvement)
improve_images, improve_labels = load_dataset("models/ddd_dataset/ImprovementSet")
if improve_images is not None and improve_labels is not None:
print("Performing additional training with the ImprovementSet...")
model.fit(improve_images, improve_labels, epochs=5) # Use fewer epochs for improvement phase
# Load the test dataset (for final evaluation)
test_images, test_labels = load_dataset("models/ddd_dataset/testSet")
if test_images is not None and test_labels is not None:
print("Evaluating model on the test set...")
test_loss, test_accuracy = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_accuracy * 100:.2f}%")
# Save the model only if the test accuracy meets the threshold
if test_accuracy >= ACCURACY_THRESHOLD:
model.save("trained_models/sleepy_driver_detection_model.h5")
print(f"Model saved with test accuracy: {test_accuracy * 100:.2f}%")
else:
print(f"Model not saved. Test accuracy ({test_accuracy * 100:.2f}%) did not meet the threshold of {ACCURACY_THRESHOLD * 100:.2f}%")
else:
print("Test dataset could not be loaded.")