-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional.h
412 lines (364 loc) · 9.49 KB
/
functional.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#pragma once
#ifndef _FUNCTIONAL_H
#define _FUNCTIONAL_H
#include<functional>
#include<tuple>
namespace ministl
{
extern const int MAXN = 10866;
//一个行为类似函数的对象
template<class Arg, class Result>
struct unary_function
{
typedef Arg argument_type;
typedef Result result_type;
};
template<class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template<class T>
struct plus : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const
{
return x + y;
}
};
template<class T>
struct minus :binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const
{
return x - y;
}
};
template<class T>
struct multiplies : binary_function<T, T, T>
{
T operator()(const T& x, const T& y) const
{
return x*y;
}
};
template <class T>
struct modulus : binary_function <T, T, T>
{
T operator() (const T& x, const T& y) const
{
return x%y;
}
};
template<class T>
struct negate :unary_function<T, T>
{
T operator()(const T& x) const
{
return -x;
}
};
template<class T>
struct less :binary_function<T, T, bool>
{
bool operator()(const T&lhs, const T& rhs) const
{
return lhs < rhs;
}
};
template <class T>
struct greater : binary_function<T, T, bool>
{
bool operator()(const T& lhs, const T& rhs) const
{
return lhs > rhs;
}
};
template <class T>
struct equal_to : binary_function <T, T, bool>
{
bool operator() (const T& x, const T& y) const
{
return x == y;
}
};
template<class T>
struct greater_equal : binary_function<T, T, bool>
{
bool operator()(const T& lhs, const T& rhs)
{
return lhs >= rhs;
}
};
template<class T>
struct less_equal : binary_function<T, T, bool>
{
bool operator()(const T& lhs, const T& rhs)
{
return lhs <= rhs;
}
};
template <class Predicate>
class unary_negate
: public unary_function <typename Predicate::argument_type, bool>
{
protected:
Predicate fn;
public:
explicit unary_negate(const Predicate& pred) : fn(pred) {}
bool operator() (const typename Predicate::argument_type& x) const
{
return !fn(x);
}
};
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type, typename Predicate::second_argument_type, bool>
{
protected:
Predicate fn;
public:
explicit binary_negate(const Predicate& pred) :fn(pred) {}
bool operator() (const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const
{
return !fn(x, y);
}
};
template<class Operation>
class binder1st
: public binary_function<typename Operation::first_argument_type, typename Operation::second_argument_type, typename Operation::result_type>
{
protected:
typename Operation::first_argument_type val;
Operation op;
public:
explicit binder1st(const Operation& operation, const typename Operation::first_argument_type x) :op(operation).val(x) {}
typename Operation::result_type operator()(const typename Operation::second_argument_type& xs)
{
return op(val, x);
}
};
template<class Operation>
class binder2nd
: public binary_function<typename Operation::first_argument_type, typename Operation::second_argument_type, typename Operation::result_type>
{
protected:
typename Operation::second_argument_type val;
Operation op;
public:
explicit binder2nd(const Operation& operation, const typename Operation::second_argument_type x) :op(operation).val(x) {}
typename Operation::result_type operator()(const typename Operation::first_argument_type& xs)
{
return op(x, val);
}
};
template<class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result>
{
protected:
Result(*pfunc)(Arg);
public:
explicit pointer_to_unary_function(Result(*f)(Arg)) :pfunc(f) {}
Result operator()(Arg x) const
{
return pfunc(x);
}
};
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function <Arg1, Arg2, Result>
{
protected:
Result(*pfunc)(Arg1, Arg2);
public:
explicit pointer_to_binary_function(Result(*f)(Arg1, Arg2)) : pfunc(f) {}
Result operator() (Arg1 x, Arg2 y) const
{
return pfunc(x, y);
}
};
//接收一个T的指针,调用它返回S的那个成员函数
template<class S,class T>
class mem_fun_t : public unary_function<T*, S>
{
S(T::*pmem)();
public:
explicit mem_fun_t(S(T::*p)()) :pmem(p) {}
S operator()(T* p)
{
return (p->*mem)();
}
};
//Returns a function object that encapsulates function f.
template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result(*f)(Arg))
{
return pointer_to_unary_function<Arg, Result>(f);
}
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1, Arg2, Result> ptr_fun(Result(*f)(Arg1, Arg2))
{
return pointer_to_binary_function<Arg1, Arg2, Result>(f);
}
template <class S, class T> mem_fun_t<S, T> mem_fun(S(T::*f)())
{
return mem_fun_t<S, T>(f);
}
template <class S, class T, class A>
class mem_fun1_t : public binary_function <T*, A, S>
{
S(T::*pmem)(A);
public:
explicit mem_fun1_t(S(T::*p)(A)) : pmem(p) {}
S operator() (T* p, A x) const
{
return (p->*pmem)(x);
}
};
template <class S, class T, class A> mem_fun1_t<S, T, A> mem_fun(S(T::*f)(A))
{
return mem_fun1_t<S, T, A>(f);
}
template <class S, class T>
class const_mem_fun_t : public unary_function <T*, S>
{
S(T::*pmem)() const;
public:
explicit const_mem_fun_t(S(T::*p)() const) : pmem(p) {}
S operator() (T* p) const
{
return (p->*pmem)();
}
};
template <class S, class T> const_mem_fun_t<S, T> mem_fun(S(T::*f)() const)
{
return const_mem_fun_t<S, T>(f);
}
template <class S, class T, class A>
class const_mem_fun1_t : public binary_function <T*, A, S>
{
S(T::*pmem)(A) const;
public:
explicit const_mem_fun1_t(S(T::*p)(A) const) : pmem(p) {}
S operator() (T* p, A x) const
{
return (p->*pmem)(x);
}
};
template <class S, class T, class A> const_mem_fun1_t<S, T, A> mem_fun(S(T::*f)(A) const)
{
return const_mem_fun1_t<S, T, A>(f);
}
template <class S, class T>
class mem_fun_ref_t : public unary_function <T, S>
{
S(T::*pmem)();
public:
explicit mem_fun_ref_t(S(T::*p)()) : pmem(p) {}
S operator() (T& p) const
{
return (p.*pmem)();
}
};
template<class S,class T,class A>
class mem_fun1_ref_t : public binary_function<T, S, A>
{
S(T::*pmem)(A);
public:
explicit mem_fun1_ref_t(S(T::*p)(A)) :pmem(p) {}
S operator()(T& p, A x) const
{
return (p.*pmem)(x);
}
};
template <class S, class T>
class const_mem_fun_ref_t : public unary_function <T, S>
{
S(T::*pmem)() const;
public:
explicit const_mem_fun_ref_t(S(T::*p)() const) : pmem(p) {}
S operator() (T& p) const
{
return (p.*pmem)();
}
};
template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function <T, A, S>
{
S(T::*pmem)(A) const;
public:
explicit const_mem_fun1_ref_t(S(T::*p)(A) const) : pmem(p) {}
S operator() (T& p, A x) const
{
return (p.*pmem)(x);
}
};
//Returns a function object that encapsulates member function f of type T.
template <class S, class T>
mem_fun_ref_t<S, T> mem_fun_ref(S(T::*f)())
{
return mem_fun_ref_t<S, T>(f);
}
template <class S, class T, class A>
mem_fun1_ref_t<S, T, A> mem_fun_ref(S(T::*f)(A))
{
return mem_fun1_ref_t<S, T, A>(f);
}
template <class S, class T>
const_mem_fun_ref_t<S, T> mem_fun_ref(S(T::*f)() const)
{
return const_mem_fun_ref_t<S, T>(f);
}
template <class S, class T, class A>
const_mem_fun1_ref_t<S, T, A> mem_fun_ref(S(T::*f)(A) const)
{
return const_mem_fun1_ref_t<S, T, A>(f);
}
template <std::size_t...>
struct tuple_indices {};
template <std::size_t Sp, class IntTuple, std::size_t Ep>
struct make_indices_imp;
template <std::size_t Sp, std::size_t... Indices, std::size_t Ep>
struct make_indices_imp<Sp, tuple_indices<Indices...>, Ep>
{
typedef typename make_indices_imp<Sp + 1, tuple_indices<Indices..., Sp>, Ep>::type type;
};
template <std::size_t Ep, std::size_t... Indices>
struct make_indices_imp<Ep, tuple_indices<Indices...>, Ep>
{
typedef tuple_indices<Indices...> type;
};
template <std::size_t Ep, std::size_t Sp = 0>
struct make_tuple_indices
{
typedef typename make_indices_imp<Sp, tuple_indices<>, Ep>::type type;
};
template <class F, class... Args>
struct binder
{
binder(F&& f, Args&&... args) :data(std::forward<F>(f), std::forward<Args>(args)...) {}
inline auto operator()()
{
typedef typename make_tuple_indices<std::tuple_size<std::tuple<F, Args...> >::value, 1>::type index_type;
return run2(index_type());
}
template <std::size_t... Indices>
void run2(tuple_indices<Indices...>)
{
invoke(std::move(std::get<0>(data)), std::move(std::get<Indices>(data))...);
}
inline auto invoke(F&& f, Args&&... args)
{
return std::forward<F>(f)(std::forward<Args>(args)...);
}
std::tuple<F,Args...> data;
};
template <class F, class... Args >
ministl::binder<F,Args...> bind(F&& f, Args&&... args)
{
return binder<F, Args...>(std::forward<F>(f), std::forward<Args>(args)...);
}
}
#endif