-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedian_of_two_sorted_arrays.rs
84 lines (67 loc) · 1.95 KB
/
median_of_two_sorted_arrays.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
///
/// Problem: Median of Two Sorted Arrays
///
/// There are two sorted arrays nums1 and nums2 of size m and n respectively.
///
/// Find the median of the two sorted arrays. The overall run time complexity
/// should be O(log (m+n)).
///
/// You may assume nums1 and nums2 cannot be both empty.
///
/// Example 1:
///
/// nums1 = [1, 3]
/// nums2 = [2]
///
/// The median is 2.0
/// Solution 1:
/// Time complexity: 0(n log n)
/// Space complexity: O(m + n)
impl Solution {
pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 {
let mut numbers = [nums1, nums2].concat();
numbers.sort();
let numbers_length = numbers.len();
let median_index = numbers_length / 2;
if numbers_length % 2 == 0 {
let lower = median_index - 1;
let upper = median_index;
return (numbers[lower] as f64 + numbers[upper] as f64) / 2.0;
} else {
return numbers[median_index] as f64;
}
}
}
/// Solution 2:
/// Time complexity: O(m + n)
/// Space complexity: O(m + n)
impl Solution {
pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 {
let mut merged = Vec::new();
let mut i = 0;
let mut j = 0;
while i < nums1.len() && j < nums2.len() {
if nums1[i] < nums2[j] {
merged.push(nums1[i]);
i += 1;
} else {
merged.push(nums2[j]);
j += 1;
}
}
while i < nums1.len() {
merged.push(nums1[i]);
i += 1;
}
while j < nums2.len() {
merged.push(nums2[j]);
j += 1;
}
let len = merged.len();
if len % 2 == 0 {
return (merged[len / 2 - 1] as f64 + merged[len / 2] as f64) / 2.0;
} else {
return merged[len / 2] as f64;
}
}
}