forked from TDAmeritrade/stumpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin_versions.py
executable file
·259 lines (226 loc) · 7.64 KB
/
min_versions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
import argparse
import re
import pandas as pd
from packaging.specifiers import SpecifierSet
from packaging.version import Version
def get_min_python_version():
"""
Find the minimum version of Python supported (i.e., not end-of-life)
"""
min_python = (
pd.read_html("https://devguide.python.org/versions/")[0].iloc[-1].Branch
)
return min_python
def get_min_numba_numpy_version(min_python):
"""
Find the minimum versions of Numba and NumPy that supports the specified
`min_python` version
"""
df = (
pd.read_html(
"https://numba.readthedocs.io/en/stable/user/installing.html#version-support-information" # noqa
)[0]
.dropna()
.drop(columns=["Numba.1", "llvmlite", "LLVM", "TBB"])
.query('`Python`.str.contains("2.7") == False')
.query('`Numba`.str.contains(".x") == False')
.query('`Numba`.str.contains("{") == False')
.pipe(
lambda df: df.assign(
MIN_PYTHON_SPEC=(
df.Python.str.split().str[1].replace({"<": "="}, regex=True)
+ df.Python.str.split().str[0].replace({".x": ""}, regex=True)
).apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MIN_NUMPY=(df.NumPy.str.split().str[0].replace({".x": ""}, regex=True))
)
)
.assign(
COMPATIBLE=lambda row: row.apply(
check_python_compatibility, axis=1, args=(Version(min_python),)
)
)
.query("COMPATIBLE == True")
.pipe(lambda df: df.assign(MINOR=df.Numba.str.split(".").str[1]))
.pipe(lambda df: df.assign(PATCH=df.Numba.str.split(".").str[2]))
.sort_values(["MINOR", "PATCH"], ascending=[False, True])
.iloc[-1]
)
return df.Numba, df.MIN_NUMPY
def check_python_compatibility(row, min_python):
"""
Determine the Python version compatibility
"""
python_compatible = min_python in (row.MIN_PYTHON_SPEC)
return python_compatible
def check_scipy_compatibility(row, min_python, min_numpy):
"""
Determine the Python and NumPy version compatibility
"""
python_compatible = min_python in (row.MIN_PYTHON_SPEC & row.MAX_PYTHON_SPEC)
numpy_compatible = min_numpy in (row.MIN_NUMPY_SPEC & row.MAX_NUMPY_SPEC)
return python_compatible & numpy_compatible
def get_min_scipy_version(min_python, min_numpy):
"""
Determine the SciPy version compatibility
"""
colnames = pd.read_html(
"https://docs.scipy.org/doc/scipy/dev/toolchain.html#numpy"
)[1].columns
converter = {colname: str for colname in colnames}
df = (
pd.read_html(
"https://docs.scipy.org/doc/scipy/dev/toolchain.html#numpy",
converters=converter,
)[1]
.rename(columns=lambda x: x.replace(" ", "_"))
.replace({".x": ""}, regex=True)
.pipe(
lambda df: df.assign(
SciPy_version=df.SciPy_version.str.replace(
r"\d\/", "", regex=True # noqa
)
)
)
.query('`Python_versions`.str.contains("2.7") == False')
.pipe(
lambda df: df.assign(
MIN_PYTHON_SPEC=df.Python_versions.str.split(",")
.str[0]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MAX_PYTHON_SPEC=df.Python_versions.str.split(",")
.str[1]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MIN_NUMPY_SPEC=df.NumPy_versions.str.split(",")
.str[0]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MAX_NUMPY_SPEC=df.NumPy_versions.str.split(",")
.str[1]
.apply(SpecifierSet)
)
)
.assign(
COMPATIBLE=lambda row: row.apply(
check_scipy_compatibility,
axis=1,
args=(Version(min_python), Version(min_numpy)),
)
)
.query("COMPATIBLE == True")
.pipe(lambda df: df.assign(MINOR=df.SciPy_version.str.split(".").str[1]))
.pipe(lambda df: df.assign(PATCH=df.SciPy_version.str.split(".").str[2]))
.sort_values(["MINOR", "PATCH"], ascending=[False, True])
.iloc[-1]
)
return df.SciPy_version
def match_pkg_version(line, pkg_name):
"""
Regular expression to match package versions
"""
matches = re.search(
rf"""
{pkg_name} # Package name
[\s=><:"\'\[\]]* # Zero or more spaces or special characters
(\d+\.\d+[\.0-9]*) # Capture "version" in `matches`
""",
line,
re.VERBOSE | re.IGNORECASE, # Ignores all whitespace and case in pattern
)
return matches
def find_pkg_mismatches(pkg_name, pkg_version, fnames):
"""
Determine if any package version has mismatches
"""
pkg_mismatches = []
for fname in fnames:
with open(fname, "r") as file:
for line_num, line in enumerate(file, start=1):
l = line.strip().replace(" ", "").lower()
matches = match_pkg_version(l, pkg_name)
if matches is not None:
version = matches.groups()[0]
if version != pkg_version:
pkg_mismatches.append((pkg_name, version, fname, line_num))
return pkg_mismatches
def test_pkg_mismatch_regex():
"""
Validation function for the package mismatch regex
"""
pkgs = {
"numpy": "0.0",
"scipy": "0.0",
"python": "2.7",
"python-version": "2.7",
"numba": "0.0",
}
lines = [
"Programming Language :: Python :: 3.8",
"STUMPY supports Python 3.8",
"python-version: ['3.8']",
'requires-python = ">=3.8"',
"numba>=0.55.2",
]
for line in lines:
match_found = False
for pkg_name, pkg_version in pkgs.items():
matches = match_pkg_version(line, pkg_name)
if matches:
match_found = True
break
if not match_found:
raise ValueError(f'Package mismatch regex fails to cover/match "{line}"')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("min_python", nargs="?", default=None)
args = parser.parse_args()
if args.min_python is not None:
MIN_PYTHON = str(args.min_python)
else:
MIN_PYTHON = get_min_python_version()
MIN_NUMBA, MIN_NUMPY = get_min_numba_numpy_version(MIN_PYTHON)
MIN_SCIPY = get_min_scipy_version(MIN_PYTHON, MIN_NUMPY)
print(
f"python: {MIN_PYTHON}\n"
f"numba: {MIN_NUMBA}\n"
f"numpy: {MIN_NUMPY}\n"
f"scipy: {MIN_SCIPY}"
)
pkgs = {
"numpy": MIN_NUMPY,
"scipy": MIN_SCIPY,
"numba": MIN_NUMBA,
"python": MIN_PYTHON,
"python-version": MIN_PYTHON,
}
fnames = [
"pyproject.toml",
"requirements.txt",
"environment.yml",
".github/workflows/github-actions.yml",
"README.rst",
]
test_pkg_mismatch_regex()
for pkg_name, pkg_version in pkgs.items():
for name, version, fname, line_num in find_pkg_mismatches(
pkg_name, pkg_version, fnames
):
print(
f"{pkg_name} {pkg_version} Mismatch: Version {version} "
f"found in {fname}:{line_num}"
)