-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforward_kinematics.py
145 lines (99 loc) · 4.03 KB
/
forward_kinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
from matplotlib.animation import FuncAnimation
trans, rots, goal = [], [], []
line, scatters, scatter_goal = [], [], []
fig, ax = plt.subplots()
def init():
global trans, rots, goal, line, scatters, scatter_goal
# Initialize skeleton.
trans = np.array([[0, 0], # Root node (shouldn't be changed).
[1, 0],
[1, 0],
[1, 0],
[1, 0],
])
rots = np.array([0.0, # Root node.
0.0,
0.0,
0.0,
0.0,
])
goal = np.random.rand(2) * 6 - 3
# Set canvas parameters.
ax.axis("equal")
ax.set_xlim(-5.0, 5.0)
ax.set_ylim(-5.0, 5.0)
loc = plticker.MultipleLocator(base=1)
ax.xaxis.set_major_locator(loc)
ax.yaxis.set_major_locator(loc)
ax.grid(which='both', axis='both', linestyle='-', zorder=0)
ax.set_facecolor('#D2F8E7')
# Set plotting objects.
line, = ax.plot([], [], color="red", zorder=1)
scatters = [None] * len(trans)
for i in range(len(trans)):
scatters[i] = ax.scatter([], [], zorder=2, s=100)
scatter_goal = ax.scatter([], [], zorder=2, s=350, c="green", marker="*")
def update(frame):
global trans, rots, goal, line, scatters, scatter_goal
# Compute needed rotation to get to the goal.
drots = get_jacobian(trans, rots, goal)
rots = rots + drots
pos = update_skeleton(trans, rots)
# If the goal position is achieved, reset the goal position.
if np.linalg.norm(pos[-1] - goal) < 0.2:
goal = np.random.rand(2) * 6 - 3
# Plot current state.
line.set_data(pos[:, 0], pos[:, 1])
for i in range(len(pos)):
scatters[i].set_offsets(pos[i])
scatter_goal.set_offsets(goal)
def update_skeleton(skeleton, joints):
# Initialize homogeneous matrices.
rot_matrix = np.array([np.identity(3)] * len(skeleton))
trans_matrix = np.array([np.identity(3)] * len(skeleton))
# Set the translation and rotation homogeneous matrices of each node.
for i in range(len(skeleton)):
rot_matrix[i][0][0] = math.cos(joints[i])
rot_matrix[i][0][1] = -math.sin(joints[i])
rot_matrix[i][1][0] = math.sin(joints[i])
rot_matrix[i][1][1] = math.cos(joints[i])
trans_matrix[i][0][2] = skeleton[i][0]
trans_matrix[i][1][2] = skeleton[i][1]
# Initialize the matrix that will have the position and the final vectors that will have the same position.
pos_matrix = np.array([np.identity(3)] * len(skeleton))
pos = np.ones(shape=(len(skeleton), 2))
# Compute nodes positions as an accumulation of the transformations.
for i in range(len(skeleton)):
for j in range(i + 1):
pos_matrix[i] = pos_matrix[i].dot(rot_matrix[j].dot(trans_matrix[j]))
pos[i] = np.array([pos_matrix[i][0][2], pos_matrix[i][1][2]])
return pos
def get_jacobian(skeleton, joints, final_pos):
dt = 0.0001
alpha = 0.1
# Get the current position and the desired displacement.
ini_pos = update_skeleton(skeleton, joints)
direction = final_pos - ini_pos[-1]
# Compute the Jacobian matrix.
J = np.zeros(shape=(2, len(joints)))
for i in range(len(joints)):
djoints = joints.copy()
djoints[i] = djoints[i] + dt
dpos = update_skeleton(skeleton, djoints)
tan = (dpos[-1] - ini_pos[-1]) / dt
J[0][i] = tan[0]
J[1][i] = tan[1]
# Solve the system to obtain the angles displacement.
J_inv = np.linalg.pinv(J)
nrot = J_inv.dot(direction)
# Normalize the result to obtain a better control.
nrot = nrot / np.linalg.norm(nrot)
return nrot * alpha
if __name__ == '__main__':
init()
ani = FuncAnimation(fig, update, interval=50)
plt.show()