forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_consensus.c
804 lines (736 loc) · 28.6 KB
/
read_consensus.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/* read_consensus.c -- create and maintain consensus of reads
Copyright (C) 2022 Genome Research Ltd.
Author: pd3@sanger
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE. */
#include <assert.h>
#include <math.h>
#include "bcftools.h"
#include "read_consensus.h"
#include "cigar_state.h"
#include "kheap.h"
// Frequency arrays for each variant type
#define NI 10 // number of alternative insertion sequences at one position in a single sample
typedef struct
{
char *nt16_seq[NI];
int len[NI];
int freq[NI];
}
ins_freq_t;
typedef struct
{
int len[NI];
int freq[NI];
}
del_freq_t;
#define BF_DEL 5
typedef struct
{
int base[6]; // frequencies of A,C,G,T,N,deletion
}
base_freq_t;
// Candidate variants for each interesting position to build consensus haplotypes
enum variant_type { snv, ins, del, done };
typedef struct
{
enum variant_type vtype;
hts_pos_t pos; // variant position (reference sequence coordinates), indels follow VCF convention
int idx; // temporary 0-based index to rcns.cvar
int which, // base/ins/del in rcns.[base|ins|del]_freq array
depth; // coverage at the position
float af, af_dev; // variant allele frequency (just for debugging printout) and absolute af deviation from 0.5
}
candidate_var_t;
static inline int cvar_not_preferred(candidate_var_t *a, candidate_var_t *b)
{
if ( a->af_dev == b->af_dev ) return a->depth < b->depth ? 1 : 0;
return a->af_dev > b->af_dev ? 1 : 0;
}
KHEAP_INIT(cvh, candidate_var_t, cvar_not_preferred);
typedef khp_cvh_t cvar_heap_t;
#define MAX_NCVAR 8 // This results in alloc() of 2^MAX_NCVAR possible haplotypes
#define NHAP (1<<MAX_NCVAR) // The number of possible haplotypes
struct _read_cns_t
{
hts_pos_t pos, beg, end; // current position and window boundaries (0-based, inclusive, ref seq coordinates)
int band, // maximum absolute deviation from the diagonal, used for BAQ alignment
max_del; // maximum deletion lentgth starting at the tested position
base_freq_t *base_freq; // frequency of each variant type: base, ins, del
ins_freq_t *ins_freq;
del_freq_t *del_freq;
char *stmp; // temporary array
int mstmp, mfreq; // allocated size of stmp and *_freq arrays
cvar_heap_t *cv_heap; // heap to maintain the top MAX_NCVAR variants
int ncvar; // cvar and cv_heap size
candidate_var_t cvar[MAX_NCVAR]; // candidate variants, sorted by position and type
int hap_freq[NHAP]; // haplotype frequencies
bam_pileup1_t *plp; // reads to construct consensus from
int nplp; // number of reads in the pileup
int cns_hap[2], ncns; // the top two consensus haplotypes and the number of haplotypes to use
int mcns; // the allocated size of cns.seq and cns.pos buffers
cns_seq_t cns[3]; // the consensus sequences to fill
};
void rcns_destroy(read_cns_t *rcns)
{
if ( !rcns ) return;
int i,j;
for (i=0; i<rcns->mfreq; i++)
{
ins_freq_t *ifrq = &rcns->ins_freq[i];
for (j=0; j<NI && ifrq->nt16_seq[j]; j++) free(ifrq->nt16_seq[j]);
}
for (i=0; i<2; i++)
free(rcns->cns[i].seq);
free(rcns->ins_freq);
free(rcns->del_freq);
free(rcns->base_freq);
free(rcns->stmp);
khp_destroy(cvh,rcns->cv_heap);
free(rcns);
}
static int init_arrays(read_cns_t *rcns)
{
int i,j,n = rcns->end - rcns->beg + 1;
if ( n > rcns->mfreq )
{
ins_freq_t *ifrq = (ins_freq_t*) realloc(rcns->ins_freq,sizeof(*rcns->ins_freq)*n);
if ( !ifrq ) return -1;
rcns->ins_freq = ifrq;
memset(ifrq+rcns->mfreq,0,sizeof(*rcns->ins_freq)*(n-rcns->mfreq));
del_freq_t *dfrq = (del_freq_t*) realloc(rcns->del_freq,sizeof(*rcns->del_freq)*n);
if ( !dfrq ) return -1;
rcns->del_freq = dfrq;
memset(dfrq+rcns->mfreq,0,sizeof(*rcns->del_freq)*(n-rcns->mfreq));
base_freq_t *bfrq = (base_freq_t*) realloc(rcns->base_freq,sizeof(*rcns->base_freq)*n);
if ( !bfrq ) return -1;
rcns->base_freq = bfrq;
memset(bfrq+rcns->mfreq,0,sizeof(*rcns->base_freq)*(n-rcns->mfreq));
rcns->mfreq = n;
}
memset(rcns->base_freq,0,sizeof(*rcns->base_freq)*n);
memset(rcns->del_freq,0,sizeof(*rcns->del_freq)*n);
for (i=0; i<n; i++)
{
ins_freq_t *ifrq = &rcns->ins_freq[i];
for (j=0; j<NI && ifrq->nt16_seq[j]; j++) free(ifrq->nt16_seq[j]);
}
memset(rcns->ins_freq,0,sizeof(*rcns->ins_freq)*n);
return 0;
}
int rcns_reset(read_cns_t *rcns, hts_pos_t pos, hts_pos_t beg, hts_pos_t end)
{
rcns->band = 0;
rcns->pos = pos;
rcns->beg = beg;
rcns->end = end;
int i;
for (i=0; i<2; i++) rcns->cns[i].nseq = rcns->cns[i].ipos = 0;
// this should not be necessary if the caller did run all steps
while (rcns->cv_heap->ndat) khp_delete(cvh, rcns->cv_heap);
return init_arrays(rcns);
}
static inline void add_base(read_cns_t *rcns, int ref_pos, int nt16)
{
int i = ref_pos - rcns->beg;
rcns->base_freq[i].base[seq_nt16_int[nt16]]++;
}
static void add_ins(read_cns_t *rcns, int ref_pos, int seq_pos, uint8_t *raw_seq, int len)
{
int i = ref_pos - rcns->beg;
ins_freq_t *ifrq = &rcns->ins_freq[i];
char *str;
if ( rcns->mstmp < len )
{
str = realloc(rcns->stmp,len*sizeof(*str));
if ( !str ) return;
rcns->mstmp = len;
rcns->stmp = str;
}
else
str = rcns->stmp;
for (i=0; i<len; i++) str[i] = bam_seqi(raw_seq,i+seq_pos);
for (i=0; i<NI && ifrq->nt16_seq[i]; i++)
if ( ifrq->len[i]==len && !memcmp(ifrq->nt16_seq[i],str,len) ) break;
if ( i>=NI ) return; // too many choices, typically homopolymers in long reads; discard
if ( !ifrq->nt16_seq[i] ) // new insertion
{
if ( !(ifrq->nt16_seq[i]=malloc(len)) ) return;
memcpy(ifrq->nt16_seq[i], str, len);
ifrq->len[i] = len;
}
ifrq->freq[i]++;
}
static void add_del(read_cns_t *rcns, int ref_pos, int len)
{
int i = ref_pos - rcns->beg;
int j,n = rcns->end - rcns->beg + 1;
if ( i + len + 1 < n ) n = i + len + 1;
for (j=i+1; j<n; j++)
rcns->base_freq[j].base[BF_DEL]++;
del_freq_t *dfrq = &rcns->del_freq[i];
for (i=0; i<NI && dfrq->len[i]; i++)
if ( dfrq->len[i]==len ) break;
if ( i>=NI ) return; // too many choices, typically homopolymers in long reads; discard
if ( !dfrq->len[i] ) dfrq->len[i] = len; // new deletion
dfrq->freq[i]++;
}
read_cns_t *rcns_init(hts_pos_t pos, hts_pos_t beg, hts_pos_t end)
{
read_cns_t *rcns = (read_cns_t*) calloc(1,sizeof(read_cns_t));
rcns->pos = pos;
rcns->beg = beg;
rcns->end = end;
rcns->cv_heap = khp_init(cvh);
if ( init_arrays(rcns)!=0 )
{
rcns_destroy(rcns);
return NULL;
}
return rcns;
}
int rcns_set_reads(read_cns_t *rcns, bam_pileup1_t *plp, int nplp)
{
// save the reads for phasing, this can be called multiple times
rcns->plp = plp;
rcns->nplp = nplp;
// fill consensus arrays
int i,j,k, local_band_max = 0; // maximum absolute deviation from diagonal
for (i=0; i<nplp; i++) // for each read...
{
const bam_pileup1_t *p = plp + i;
bam1_t *b = p->b;
int x = b->core.pos; // ref coordinate
int y = 0; // seq coordinate
uint32_t *cigar = bam_get_cigar(b);
uint8_t *seq = bam_get_seq(b);
int local_band = 0; // current deviation from diagonal
for (k = 0; k < b->core.n_cigar; ++k)
{
int op = cigar[k] & BAM_CIGAR_MASK;
int len = cigar[k] >> BAM_CIGAR_SHIFT;
if ( op==BAM_CSOFT_CLIP ) y += len;
else if ( op==BAM_CMATCH || op==BAM_CEQUAL || op==BAM_CDIFF )
{
if ( x<rcns->end && x+len>rcns->beg )
{
int j_beg = rcns->beg > x ? rcns->beg - x : 0; // how many bases to skip in the ref and qry
int j_end = rcns->end < x + len - 1 ? rcns->end - x : len - 1;
x += j_beg;
y += j_beg;
for (j=j_beg; j<=j_end; j++, x++, y++) add_base(rcns,x,bam_seqi(seq,y));
}
else
{
x += len;
y += len;
}
}
else if ( op==BAM_CINS )
{
if ( x>rcns->beg && x<rcns->end )
{
local_band += p->indel;
add_ins(rcns,x-1,y,seq,len); // x-1: one base before as in VCF
}
y += len;
}
else if ( op==BAM_CDEL )
{
if ( x>rcns->beg && x+len-1<=rcns->end )
{
local_band += -p->indel;
add_del(rcns,x-1,len); // x-1: one base before as in VCF
}
x += len;
}
else if ( op==BAM_CHARD_CLIP ) continue;
else error("rcns_set_reads todo: unknown cigar operator %d\n",op);
if ( local_band_max < local_band ) local_band_max = local_band;
}
// Track the biggest deviation +/- from diagonal, used in BAQ alignment step.
if ( rcns->band < local_band_max ) rcns->band = local_band_max;
}
return 0;
}
#if DEBUG_RCNS
static void debug_print_base_freqs(read_cns_t *rcns, const char *ref)
{
int i,j,k,n = rcns->end - rcns->beg + 1;
fprintf(stderr,"beg,end,pos=%d %d %d\n",(int)rcns->beg,(int)rcns->end,(int)rcns->pos);
base_freq_t *bfreq = rcns->base_freq;
ins_freq_t *ifreq = rcns->ins_freq;
del_freq_t *dfreq = rcns->del_freq;
for (i=0; i<n && ref[i]; i++)
{
fprintf(stderr,"%"PRIhts_pos" %c\t",rcns->beg+i+1,ref[i]);
for (j=0; j<6; j++)
fprintf(stderr,"\t%d%s",bfreq[i].base[j],ref[i]=="ACGTNi"[j]?"*":"");
fprintf(stderr,"\t");
for (j=0; j<NI && dfreq[i].len[j]; j++)
fprintf(stderr," -%d:%d",dfreq[i].len[j],dfreq[i].freq[j]);
fprintf(stderr,"\t");
for (j=0; j<NI && ifreq[i].len[j]; j++)
{
fprintf(stderr," +");
for (k=0; k<ifreq[i].len[j]; k++) fprintf(stderr,"%c",seq_nt16_str[(int)ifreq[i].nt16_seq[j][k]]);
fprintf(stderr,":%d",ifreq[i].freq[j]);
}
fprintf(stderr,"\n");
}
}
static const char *vtype2string(enum variant_type vtype)
{
if ( vtype==snv ) return "snv";
if ( vtype==ins ) return "ins";
if ( vtype==del ) return "del";
return "???";
}
static void debug_print_candidate_variants(read_cns_t *rcns)
{
int i;
fprintf(stderr,"Candidate variants:\n");
for (i=0; i<rcns->ncvar; i++)
{
candidate_var_t *var = &rcns->cvar[i];
fprintf(stderr,"\tvar%d pos=%"PRIhts_pos" idx=%d vtype=%s which=%d depth=%d af=%f af_dev=%f\n",
i,var->pos+1,var->idx,vtype2string(var->vtype),var->which,var->depth,var->af,var->af_dev);
}
}
static void debug_print_haplotype_frequency_spectrum(read_cns_t *rcns)
{
int i,j;
fprintf(stderr,"Haplotype frequencies (bits from left correspond to var0,1,..):\n");
for (i=0; i<NHAP; i++)
{
if ( !rcns->hap_freq[i] ) continue;
fprintf(stderr,"\t%d: ",i);
for (j=0; j<rcns->ncvar; j++)
fprintf(stderr,"%d", i&(1<<j) ? 1 : 0);
fprintf(stderr,"\t%d\n", rcns->hap_freq[i]);
}
}
static void debug_print_consensus(read_cns_t *rcns, const char *ref)
{
int i,j,n = rcns->end - rcns->beg + 1;
fprintf(stderr,"ref: ");
for (i=0; i<n && ref[i]; i++) fprintf(stderr,"%c",ref[i]);
fprintf(stderr,"\n");
for (i=0; i<2; i++)
{
if ( !rcns->cns[i].nseq ) break;
fprintf(stderr,"Consensus%d: ",i);
for (j=0; j<=rcns->cns[i].ipos; j++)
fprintf(stderr,"%c","ACGTN"[(int)rcns->cns[i].seq[j]]);
fprintf(stderr,"#");
for (; j<rcns->cns[i].nseq; j++)
fprintf(stderr,"%c","ACGTN"[(int)rcns->cns[i].seq[j]]);
fprintf(stderr,"\n");
}
}
#else
#define debug_print_base_freqs(rcns,ref)
#define debug_print_candidate_variants(rcns)
#define debug_print_haplotype_frequency_spectrum(rcns)
#define debug_print_consensus(rcns,ref)
#endif
static int cvar_pos_cmp(const void *aptr, const void *bptr)
{
candidate_var_t *a = (candidate_var_t*)aptr;
candidate_var_t *b = (candidate_var_t*)bptr;
if ( a->pos < b->pos ) return -1;
if ( a->pos > b->pos ) return 1;
if ( a->vtype < b->vtype ) return -1;
if ( a->vtype > b->vtype ) return 1;
if ( a->which < b->which ) return -1;
if ( a->which > b->which ) return 1;
return 0;
}
static void register_variant(read_cns_t *rcns, enum variant_type vtype, int cns_pos, int which, int depth, float freq)
{
cvar_heap_t *cv_heap = rcns->cv_heap;
if ( vtype==done )
{
rcns->ncvar = 0;
while (cv_heap->ndat)
{
rcns->cvar[rcns->ncvar++] = cv_heap->dat[0];
khp_delete(cvh,cv_heap);
}
// sort the variants by pos,type,which to make determination of haplotypes from reads faster
if ( rcns->ncvar )
qsort(rcns->cvar, rcns->ncvar, sizeof(*rcns->cvar), cvar_pos_cmp);
return;
}
candidate_var_t var;
var.pos = cns_pos + rcns->beg;
var.which = which;
var.vtype = vtype;
var.depth = depth;
var.af_dev = fabs(0.5-freq);
var.af = freq;
int free_slot;
// keep the number of variants small, maximum MAX_NCVAR
if ( rcns->ncvar==MAX_NCVAR )
{
if ( cvar_not_preferred(&var,&cv_heap->dat[0]) ) return; // no need to add, the new variant is worse than the heap's worst one
free_slot = cv_heap->dat[0].idx;
khp_delete(cvh,cv_heap);
}
else
free_slot = rcns->ncvar++;
var.idx = free_slot;
rcns->cvar[free_slot] = var;
khp_insert(cvh,cv_heap,&var);
}
// Identify candidate variant positions. (Note that homozygous variants are not considered
// as those will be added trivially by taking the consensus base.) The detection limit is
// for now hard-wired. This has only indirect effect on sensitivity, will just not contribute
// to the consensus template when realigning.
static int select_candidate_variants(read_cns_t *rcns, const char *ref)
{
const float af_th = 0.1;
int i,j, n = rcns->end - rcns->beg + 1;
int max_ins_len = 0; // maximum total length of all insertions applied to allocate big enough buffers
base_freq_t *bfreq = rcns->base_freq;
ins_freq_t *ifreq = rcns->ins_freq;
del_freq_t *dfreq = rcns->del_freq;
for (i=0; i<n && ref[i]; i++)
{
for (j=0; j<NI && ifreq[i].len[j]; j++) max_ins_len += ifreq[i].len[j];
if ( i==rcns->pos - rcns->beg ) continue; // creating consensus from everything but the variants at the current position
int dp = 0;
for (j=0; j<4; j++) dp += bfreq[i].base[j];
for (j=0; j<NI && dfreq[i].len[j]; j++) dp += dfreq[i].freq[j];
for (j=0; j<NI && ifreq[i].len[j]; j++) dp += ifreq[i].freq[j];
float af = 0; // allele frequency
for (j=0; j<4; j++)
{
if ( !bfreq[i].base[j] || ref[i]=="ACGTN"[j] ) continue; // ref base or no coverage
af = (float)bfreq[i].base[j]/dp;
if ( af>af_th && af<(1-af_th) ) register_variant(rcns,snv,i,j,dp,af);
}
for (j=0; j<NI && dfreq[i].len[j]; j++)
{
af = (float)dfreq[i].freq[j]/dp;
if ( af>af_th && af<(1-af_th) ) register_variant(rcns,del,i,j,dp,af);
}
for (j=0; j<NI && ifreq[i].len[j]; j++)
{
af = (float)ifreq[i].freq[j]/dp;
if ( af>af_th && af<(1-af_th) ) register_variant(rcns,ins,i,j,dp,af);
}
}
register_variant(rcns,done,0,0,0,0); // finalize
// Reallocate buffers
if ( rcns->mcns < n + max_ins_len )
{
n += max_ins_len;
for (i=0; i<2; i++)
{
char *seq = (char*) realloc(rcns->cns[i].seq,sizeof(char)*n);
if ( !seq ) return -1;
rcns->cns[i].seq = seq;
}
rcns->mcns = n;
}
// Find the longest deletion at the query position
i = rcns->pos - rcns->beg;
rcns->max_del = 0;
for (j=0; j<NI && j<dfreq[i].len[j]; j++)
{
if ( rcns->max_del < dfreq[i].len[j] ) rcns->max_del = dfreq[i].len[j];
}
return 0;
}
static int create_haplotype_frequency_spectrum(read_cns_t *rcns)
{
memset(rcns->hap_freq,0,sizeof(rcns->hap_freq));
int i;
for (i=0; i<rcns->nplp; i++) // for each read...
{
const bam_pileup1_t *p = rcns->plp + i;
cigar_state_t cigar;
cstate_init(&cigar,p->b);
int j,k,hap = 0;
for (j=0; j<rcns->ncvar; j++)
{
candidate_var_t *cvar = &rcns->cvar[j];
if ( cvar->vtype==snv )
{
int iseq = cstate_seek_op_fwd(&cigar, cvar->pos, BAM_CMATCH, NULL);
if ( iseq==-2 ) break;
if ( iseq==-1 ) continue;
int nt16 = bam_seqi(cigar.seq, iseq);
if ( seq_nt16_int[nt16]==cvar->which ) hap |= 1<<j;
}
else if ( cvar->vtype==ins )
{
int len;
ins_freq_t *ifrq = &rcns->ins_freq[cvar->pos - rcns->beg];
int iseq = cstate_seek_op_fwd(&cigar, cvar->pos+1, BAM_CINS, &len);
if ( iseq==-2 ) break;
if ( iseq==-1 ) continue;
if ( len!=ifrq->len[cvar->which] ) continue;
for (k=0; k<ifrq->len[cvar->which]; k++)
if ( bam_seqi(cigar.seq,iseq+k)!=ifrq->nt16_seq[cvar->which][k] ) break;
if ( k==ifrq->len[cvar->which] ) hap |= 1<<j;
}
else if ( cvar->vtype==del )
{
int len;
del_freq_t *dfrq = &rcns->del_freq[cvar->pos - rcns->beg];
int ret = cstate_seek_op_fwd(&cigar, cvar->pos+1, BAM_CDEL, &len);
if ( ret==-2 ) break;
if ( ret==-1 ) continue;
if ( len!=dfrq->len[cvar->which] ) continue;
hap |= 1<<j;
}
}
rcns->hap_freq[hap]++;
}
return 0;
}
typedef struct
{
int haplotype, count;
}
ii_t;
static int ii_cmp(const void *a, const void *b)
{
if ( ((ii_t*)a)->count > ((ii_t*)b)->count ) return -1;
if ( ((ii_t*)a)->count < ((ii_t*)b)->count ) return 1;
return 0;
}
// Select two most common haplotypes trying to account for 1bp errors. Haplotypes
// are represented as 8-bit numbers, each bit corresponds to one candidate variant.
static int correct_haplotype_errors(read_cns_t *rcns)
{
int i,j, tot = 0;
ii_t freq[NHAP];
for (i=0; i<NHAP; i++)
{
freq[i].haplotype = i;
freq[i].count = rcns->hap_freq[i];
tot += rcns->hap_freq[i];
}
qsort(freq, NHAP, sizeof(ii_t), ii_cmp); // sort haplotypes in descending order
for (i=NHAP-1; i>1; i--)
{
if ( !freq[i].count ) continue;
if ( freq[1].count > tot - freq[0].count - freq[1].count ) break; // the top2 hapotypes cannot change anymore
// Find a similar haplotype with the highest frequency. Assuming errors go in 0->1
// direction only and considering one error only.
int count = freq[i].count, max_hap = 0;
for (j=0; j<MAX_NCVAR; j++)
{
if ( !(freq[i].haplotype & (1U<<j)) ) continue; // j-th bit not set in this haplotype
int hap = freq[i].haplotype ^ (1U<<j); // toggle j-th bit
assert( hap>=0 && hap<NHAP );
if ( count < rcns->hap_freq[hap] ) count = rcns->hap_freq[hap], max_hap = hap;
}
if ( count == freq[i].count ) continue;
// Update frequency and sort the two modified elements
count = freq[i].count;
freq[i].count = 0;
rcns->hap_freq[freq[i].haplotype] = 0;
rcns->hap_freq[max_hap] += count;
for (j=i+1; j<NHAP; j++)
{
if ( !freq[j].count ) break;
ii_t tmp = freq[j-1]; freq[j-1] = freq[j]; freq[j] = tmp;
}
for (j=i-1; j>=0; j--)
{
if ( freq[j].haplotype==max_hap ) freq[j].count += count; // update the best matching haplotype
if ( freq[j].count < freq[j+1].count )
{
ii_t tmp = freq[j]; freq[j] = freq[j+1]; freq[j+1] = tmp;
}
}
}
// Use only one consensus if the next best haplotype is populated by less than 10% of reads
rcns->ncns = ((float)freq[1].count / (freq[0].count + freq[1].count) < 0.1) ? 1 : 2;
// Remove unused candidate variants from the top two haplotypes
int hap0 = freq[0].haplotype;
int hap1 = rcns->ncns==2 ? freq[1].haplotype : 0;
rcns->cns_hap[0] = 0;
rcns->cns_hap[1] = 0;
for (i=0,j=0; i<MAX_NCVAR; i++)
{
if ( !((hap0|hap1) & (1U<<i)) ) continue; // unused candidate variant, skip
if ( i!=j ) rcns->cvar[j] = rcns->cvar[i];
if ( hap0 & (1U<<i) ) rcns->cns_hap[0] |= 1U<<j;
if ( hap1 & (1U<<i) ) rcns->cns_hap[1] |= 1U<<j;
j++;
}
rcns->ncvar = j;
#if DEBUG_RCNS
// This only matters for debugging print
memset(rcns->hap_freq,0,NHAP*sizeof(*rcns->hap_freq));
rcns->hap_freq[rcns->cns_hap[1]] = freq[1].count; // NB: the order matters when ncns==1
rcns->hap_freq[rcns->cns_hap[0]] = freq[0].count;
#endif
return 0;
}
// Check how frequent are insertions adjacent to the j-th position. Note that reads with an
// insertion usually increment also bfreq counts at this position, but not necessarily so,
// therefore the counts are approximate
static inline void apply_consensus_insertion(read_cns_t *rcns, cns_seq_t *cns, int j, int ivar)
{
// Only apply consensus insertions that are not being tested by bam2bcf_iaux, i.e. not at the current pos
hts_pos_t ref_pos = rcns->beg + j;
if ( rcns->pos == ref_pos ) return;
// Only apply when there is no insertion at this position registered as a variant
while ( ivar < rcns->ncvar && rcns->cvar[ivar].pos == ref_pos )
{
if ( rcns->cvar[ivar].vtype == ins ) return;
ivar++;
}
base_freq_t *bfreq = rcns->base_freq;
ins_freq_t *ifreq = rcns->ins_freq;
int k, nreads = 0;
for (k=0; k<BF_DEL; k++) nreads += bfreq[j].base[k];
int max_freq = 0, kmax = 0;
for (k=0; k<NI && ifreq[j].len[k]; k++)
if ( max_freq < ifreq[j].freq[k] ) max_freq = ifreq[j].freq[k], kmax = k;
// Include consensus insertion only if it has more than half of the reads
if ( nreads > max_freq*2 ) return;
int len = ifreq[j].len[kmax];
char *seq = ifreq[j].nt16_seq[kmax];
for (k=0; k<len; k++)
cns->seq[cns->nseq++] = seq_nt16_int[(int)seq[k]];
}
// For each position of the realignment window apply either the candidate variants
// from ith haplotype or decide on the base/ins/del by majority vote
static void create_consensus(read_cns_t *rcns, const char *ref, int ith)
{
int n = rcns->end - rcns->beg + 1;
cns_seq_t *cns = &rcns->cns[ith];
base_freq_t *bfreq = rcns->base_freq;
ins_freq_t *ifreq = rcns->ins_freq;
del_freq_t *dfreq = rcns->del_freq;
hts_pos_t prev_pos = 0;
int j,k, ivar = 0;
for (j=0; j<n; j++)
{
hts_pos_t ref_pos = rcns->beg + j;
if ( rcns->pos == ref_pos ) cns->ipos = cns->nseq;
while ( ivar < rcns->ncvar && rcns->cvar[ivar].pos < ref_pos ) ivar++;
if ( ivar >= rcns->ncvar || rcns->cvar[ivar].pos != ref_pos )
{
// This position is not recognised as a het variant so take the most frequent base, including
// a deletion if that is most frequent. However, for deleted bases make sure they are not part
// of the deletion that is being tested at this positions
int max_freq = 0, kmax = seq_nt16_int[seq_nt16_table[(int)ref[j]]];
int nk = ( ref_pos < rcns->pos || ref_pos > rcns->pos + rcns->max_del ) ? BF_DEL+1 : BF_DEL;
for (k=0; k<nk; k++)
if ( max_freq < bfreq[j].base[k] ) max_freq = bfreq[j].base[k], kmax = k;
if ( kmax!=BF_DEL ) // the most frequent base can be a deletion
{
prev_pos = ref_pos;
cns->seq[cns->nseq++] = kmax;
}
// Only apply consensus insertions that are not being tested by bam2bcf_iaux, i.e. not at the current pos
apply_consensus_insertion(rcns, cns, j, ivar);
continue;
}
int which = rcns->cvar[ivar].which;
if ( !(rcns->cns_hap[ith] & (1U<<ivar)) )
{
// This position has a heterozygous variant but not in this haplotype. Take the
// most frequent base different from the ivar-th variant
int max_freq = 0, kmax = seq_nt16_int[seq_nt16_table[(int)ref[j]]];
for (k=0; k<6; k++)
{
if ( rcns->cvar[ivar].vtype==snv && rcns->cvar[ivar].which==k ) continue;
if ( max_freq < bfreq[j].base[k] ) max_freq = bfreq[j].base[k], kmax = k;
}
if ( kmax!=BF_DEL && (!cns->nseq || prev_pos != ref_pos) )
{
prev_pos = ref_pos;
cns->seq[cns->nseq++] = kmax;
}
apply_consensus_insertion(rcns, cns, j, ivar);
continue;
}
if ( rcns->cvar[ivar].vtype == snv )
{
prev_pos = ref_pos;
cns->seq[cns->nseq++] = which;
apply_consensus_insertion(rcns, cns, j, ivar);
continue;
}
// There can be multiple variants at this position, for example snv+ins. SNVs come first
// thanks to cvar_pos_cmp(), make sure the base has not been added already.
if ( !cns->nseq || prev_pos != ref_pos )
{
int max_freq = 0, kmax = seq_nt16_int[seq_nt16_table[(int)ref[j]]];
for (k=0; k<6; k++)
{
if ( rcns->cvar[ivar].vtype==snv && rcns->cvar[ivar].which==k ) continue;
if ( max_freq < bfreq[j].base[k] ) max_freq = bfreq[j].base[k], kmax = k;
}
if ( kmax!=BF_DEL )
{
prev_pos = ref_pos;
cns->seq[cns->nseq++] = kmax;
}
}
if ( rcns->cvar[ivar].vtype == ins )
{
int len = ifreq[j].len[which];
char *seq = ifreq[j].nt16_seq[which];
for (k=0; k<len; k++)
{
prev_pos = ref_pos;
cns->seq[cns->nseq++] = seq_nt16_int[(int)seq[k]];
}
}
else if ( rcns->cvar[ivar].vtype == del ) j += dfreq[j].len[which];
}
}
// The algorithm:
// 1. Identify heterozygous variant positions
// 2. Sort variants by abs(variant_allele_freq-0.5) in descending order
// 3. Take the top sorted variants (up to 8 to fit in uint8_t) and count the number of
// corresponding reads to create frequency spectrum
// 4. Correct errors, collapse to the requested number of haplotypes (consensus sequences)
// using majority vote for the distribution tail
cns_seq_t *rcns_get_consensus(read_cns_t *rcns, const char *ref)
{
debug_print_base_freqs(rcns, ref);
select_candidate_variants(rcns, ref);
debug_print_candidate_variants(rcns);
if ( rcns->ncvar )
{
create_haplotype_frequency_spectrum(rcns);
debug_print_haplotype_frequency_spectrum(rcns);
correct_haplotype_errors(rcns);
debug_print_candidate_variants(rcns);
debug_print_haplotype_frequency_spectrum(rcns);
}
else
{
rcns->cns_hap[0] = 0;
rcns->ncns = 1;
}
// create consensus
int i;
for (i=0; i<rcns->ncns; i++) create_consensus(rcns,ref,i);
debug_print_consensus(rcns,ref);
return rcns->cns;
}