forked from matplotlib/cheatsheets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced-plots.py
141 lines (126 loc) · 4.65 KB
/
advanced-plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -----------------------------------------------------------------------------
# Matplotlib cheat sheet
# Released under the BSD License
# -----------------------------------------------------------------------------
# Script to generate all the advanced plots
import pathlib
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.style.use([
pathlib.Path(__file__).parent/'../styles/base.mplstyle',
pathlib.Path(__file__).parent/'../styles/plotlet.mplstyle',
])
subplot_kw = dict(
xlim=(0, 8), xticks=np.arange(1, 8),
ylim=(0, 8), yticks=np.arange(1, 8),
)
# Step plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
X = np.linspace(0, 10, 16)
Y = 4 + 2*np.sin(2*X)
ax.step(X, Y, color="C1")
ax.grid()
fig.savefig("../figures/advanced-step.pdf")
# Violin plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(10)
D = np.random.normal((3, 5, 4), (0.75, 1.00, 0.75), (200, 3))
VP = ax.violinplot(D, [2, 4, 6], widths=1.5,
showmeans=False, showmedians=False, showextrema=False)
for body in VP['bodies']:
body.set_facecolor('C1')
body.set_alpha(1)
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-violin.pdf")
# Boxplot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(10)
D = np.random.normal((3, 5, 4), (1.25, 1.00, 1.25), (100, 3))
VP = ax.boxplot(D, positions=[2, 4, 6], widths=1.5, patch_artist=True,
showmeans=False, showfliers=False,
medianprops={"color": "white",
"linewidth": 0.25},
boxprops={"facecolor": "C1",
"edgecolor": "white",
"linewidth": 0.25},
whiskerprops={"color": "C1",
"linewidth": 0.75},
capprops={"color": "C1",
"linewidth": 0.75})
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-boxplot.pdf")
# Barbs plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(1)
X = [[2, 4, 6]]
Y = [[1.5, 3, 2]]
U = -np.ones((1, 3)) * 0
V = -np.ones((1, 3)) * np.linspace(50, 100, 3)
ax.barbs(X, Y, U, V, barbcolor="C1", flagcolor="C1", length=5, linewidth=0.5)
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-barbs.pdf")
# Event plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(1)
X = [2, 4, 6]
D = np.random.gamma(4, size=(3, 50))
ax.eventplot(D, colors="C1", orientation="vertical", lineoffsets=X,
linewidth=0.25)
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-event.pdf")
# Errorbar plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(1)
X = [2, 4, 6]
Y = [4, 5, 4]
E = np.random.uniform(0.5, 1.5, 3)
ax.errorbar(X, Y, E, color="C1", linewidth=0.75, capsize=1)
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-errorbar.pdf")
# Hexbin plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(1)
X = np.random.uniform(1.5, 6.5, 100)
Y = np.random.uniform(1.5, 6.5, 100)
C = np.random.uniform(0, 1, 10000)
ax.hexbin(X, Y, C, gridsize=4, linewidth=0.25, edgecolor="white",
cmap=plt.get_cmap("Wistia"), alpha=1.0)
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-hexbin.pdf")
# Hist plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(1)
X = 4 + np.random.normal(0, 1.5, 200)
ax.hist(X, bins=8, facecolor="C1", linewidth=0.25, edgecolor="white")
ax.set_ylim(0, 80), ax.set_yticks(np.arange(1, 80, 10))
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-hist.pdf")
# Xcorr plot
# -----------------------------------------------------------------------------
(fig, ax) = plt.subplots(subplot_kw=subplot_kw)
np.random.seed(3)
Y = np.random.uniform(-4, 4, 250)
X = np.random.uniform(-4, 4, 250)
ax.xcorr(X, Y, usevlines=True, maxlags=6, normed=True, lw=1,
color="C1")
ax.set_xlim(-8, 8), ax.set_xticks(np.arange(-8, 8, 2))
ax.set_ylim(-.25, .25), ax.set_yticks(np.linspace(-.25, .25, 9))
ax.set_axisbelow(True)
ax.grid()
fig.savefig("../figures/advanced-xcorr.pdf")