|
| 1 | +<p>Given a <strong>zero-based permutation</strong> <code>nums</code> (<strong>0-indexed</strong>), build an array <code>ans</code> of the <strong>same length</strong> where <code>ans[i] = nums[nums[i]]</code> for each <code>0 <= i < nums.length</code> and return it.</p> |
| 2 | + |
| 3 | +<p>A <strong>zero-based permutation</strong> <code>nums</code> is an array of <strong>distinct</strong> integers from <code>0</code> to <code>nums.length - 1</code> (<strong>inclusive</strong>).</p> |
| 4 | + |
| 5 | +<p> </p> |
| 6 | +<p><strong class="example">Example 1:</strong></p> |
| 7 | + |
| 8 | +<pre> |
| 9 | +<strong>Input:</strong> nums = [0,2,1,5,3,4] |
| 10 | +<strong>Output:</strong> [0,1,2,4,5,3]<strong> |
| 11 | +Explanation:</strong> The array ans is built as follows: |
| 12 | +ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]] |
| 13 | + = [nums[0], nums[2], nums[1], nums[5], nums[3], nums[4]] |
| 14 | + = [0,1,2,4,5,3]</pre> |
| 15 | + |
| 16 | +<p><strong class="example">Example 2:</strong></p> |
| 17 | + |
| 18 | +<pre> |
| 19 | +<strong>Input:</strong> nums = [5,0,1,2,3,4] |
| 20 | +<strong>Output:</strong> [4,5,0,1,2,3] |
| 21 | +<strong>Explanation:</strong> The array ans is built as follows: |
| 22 | +ans = [nums[nums[0]], nums[nums[1]], nums[nums[2]], nums[nums[3]], nums[nums[4]], nums[nums[5]]] |
| 23 | + = [nums[5], nums[0], nums[1], nums[2], nums[3], nums[4]] |
| 24 | + = [4,5,0,1,2,3]</pre> |
| 25 | + |
| 26 | +<p> </p> |
| 27 | +<p><strong>Constraints:</strong></p> |
| 28 | + |
| 29 | +<ul> |
| 30 | + <li><code>1 <= nums.length <= 1000</code></li> |
| 31 | + <li><code>0 <= nums[i] < nums.length</code></li> |
| 32 | + <li>The elements in <code>nums</code> are <strong>distinct</strong>.</li> |
| 33 | +</ul> |
| 34 | + |
| 35 | +<p> </p> |
| 36 | +<p><strong>Follow-up:</strong> Can you solve it without using an extra space (i.e., <code>O(1)</code> memory)?</p> |
0 commit comments