-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecode.py
60 lines (48 loc) · 1.57 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import inspect
import os
import numpy as np
import tensorflow as tf
import wavefile
import kaldi_ops
import tf_wrn
current_dir = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
# Assests
KALDI_FILES = os.path.join(current_dir, 'assets', 'kaldi_files')
HCLG = os.path.join(KALDI_FILES, 'HCLG.fst')
WORD_SYMS = os.path.join(KALDI_FILES, 'words.txt')
MODEL = os.path.join(KALDI_FILES, 'final.mdl')
ID2W = kaldi_ops.read_word_table(WORD_SYMS)
MEL_OPTS = kaldi_ops.MelOpts(
num_bins=80, low_freq=20, high_freq=0, vtln_low=100, vtln_high=-500
)
# Parse arguments
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('wav_file', help='Wav audio file to decode')
params = arg_parser.parse_args()
# Read audio
with wavefile.WaveReader(params.wav_file) as wav_reader:
channels = wav_reader.channels
assert channels == 1
assert wav_reader.samplerate == 16000
samples = wav_reader.frames
wav_data = np.empty((channels, samples), dtype=np.float32, order='F')
wav_reader.read(wav_data)
wav_data = np.squeeze(wav_data)
# Build backend
fbank = kaldi_ops.fbank(
tf.constant(wav_data * tf.int16.max), mel_opts=MEL_OPTS
)
feature = kaldi_ops.add_deltas(fbank)
feature -= tf.reduce_mean(feature, axis=0, keep_dims=True)
probes = tf_wrn.build_resnet(feature)
decode = kaldi_ops.decode(
probes['log_likelihoods'], HCLG, MODEL
)
# Decode
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
decode = sess.run(decode)
# Output
print(' '.join(ID2W.get(i, '<UNK>') for i in decode.decode_sequence))