-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathPlot_grad_diversity.py
169 lines (144 loc) · 7.58 KB
/
Plot_grad_diversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import matplotlib.pyplot as plt
import copy
import matplotlib.pyplot as plt
import numpy as np
import random
import matplotlib.ticker as ticker
age_list = ['10','20','30','40','50','60','70','80','90','100']
stat_point = 0
end_point = 10
interval = 1
age_list = age_list[stat_point:end_point:interval]
color = ['#696969','coral','steelblue','maroon','deeppink','limegreen','firebrick','khaki','yellowgreen','navy']
hatch_list = ["/","X", "\\", "." , "+", "*", "o", "O", "x", "-"]
name_list=age_list
dir_root_list = ['./diversity_ord_1/', './diversity_ord_2/']'
methods_list = ['diversity']
#### If you want to plot the results of EMNIST:
Name_list = ["weight_variation_FedAvg_post/EMNIST_size47_comUE10_H0_R0.4_SSFL",
"weight_variation_Group_post/EMNIST_size47_comUE10_H1_R0.4_SSFL",
"weight_variation_FedAvg_post/EMNIST_size47_comUE30_H0_R0.4_SSFL",
"weight_variation_Group_post/EMNIST_size47_comUE30_H1_R0.4_SSFL",
"weight_variation_FedAvg_post/EMNIST_size47_comUE47_H0_R0.4_SSFL",
"weight_variation_Group_post/EMNIST_size47_comUE47_H1_R0.4_SSFL"]
#### If you want to plot the results of Cifar10
# Name_list = ["weight_variation_FedAvg_post/Cifar10_res_H0_comUE10_R0.4_SSFL",
# "weight_variation_Group_post/Cifar10_res_gn_H1_comUE10_R0.4_SSFL",
# "weight_variation_FedAvg_post/Cifar10_res_gn_H0_comUE10_R0.4_SSFL",
# "weight_variation_FedAvg_post/Cifar10_res_H0_comUE10_R0.0_SSFL",
# "weight_variation_Group_post/Cifar10_res_gn_H1_comUE10_R0.0_SSFL",
# "weight_variation_FedAvg_post/Cifar10_res_gn_H0_comUE10_R0.0_SSFL",]
l2_list = ['1','0']
all_user_list = ['1','0']
type_list = ['grad', 'weight_variation']
for type in type_list:
for dir_root in dir_root_list:
for l2_value in l2_list:
Var_list = []
for only_user in all_user_list:
for name in Name_list:
dir = dir_root + f'{name}/'
WD0 = np.load(dir+f'{type}_diversity_list_l2_{l2_value}_only_user_{only_user}.npy')
WD0 = np.array(WD0)
Var = np.zeros((10,))
Var[0:len(WD0[0:])] = WD0[0:]
Var_list.append(Var[stat_point:end_point:interval])
x = list(range(len(name_list)))
width=0.3/1.5
index=np.arange(len(name_list))+1
plt.bar(index,Var_list[0],width,color='k',tick_label = name_list, hatch=hatch_list[0],alpha=0.6)
plt.bar(index+width,Var_list[1],width,color='#d95f0e',hatch=hatch_list[1])
Legend_name = ['FedAvg','Grouping-based']
font_size = 29
plt.yscale('log')
plt.yticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.xticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.ylabel('Gradient diversity', fontdict={'family' : 'Times New Roman', 'size' : font_size})
plt.xlabel('epoch', fontdict={'family' : 'Times New Roman', 'size' : font_size})
if l2_value == '1':
plt.ylim([1.0,49.0])
else:
if only_user == '1':
plt.ylim([1.0000,7.20025])
else:
plt.ylim([1.00001,7.20025])
plt.grid(True, linestyle = "-.", linewidth = "0.15")
if l2_value == '1':
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
else:
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
plt.tight_layout()
if 'ord_1' in dir_root:
Norm_ord_L = 1
else:
Norm_ord_L = 2
if only_user == '0':
plt.savefig(f'{type}_diversity_EMNIST_C10_L2_{l2_value}_all_ord{Norm_ord_L}.pdf')
else:
plt.savefig(f'{type}_diversity_EMNIST_C10_L2_{l2_value}_only_user_ord{Norm_ord_L}.pdf')
plt.show()
#### C=30
plt.bar(index,Var_list[2],width,color='peru',tick_label = name_list, hatch=hatch_list[0],alpha=0.6)
plt.bar(index+width,Var_list[3],width,color='#2c7fb8',hatch=hatch_list[1])
Legend_name = ['FedAvg','Grouping-based']
font_size = 29
plt.yscale('log')
plt.yticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.xticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.ylabel('Gradient diversity', fontdict={'family' : 'Times New Roman', 'size' : font_size})
plt.xlabel('epoch', fontdict={'family' : 'Times New Roman', 'size' : font_size})
if l2_value == '1':
plt.ylim([1.0,49.0])
else:
if only_user == '1':
plt.ylim([1.0000,7.20025])
else:
plt.ylim([1.00001,7.20025])
plt.grid(True, linestyle = "-.", linewidth = "0.15")
if l2_value == '1':
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
else:
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
plt.tight_layout()
if 'ord_1' in dir_root:
Norm_ord_L = 1
else:
Norm_ord_L = 2
if only_user == '0':
plt.savefig(f'{type}_diversity_EMNIST_C30_L2_{l2_value}_all_ord{Norm_ord_L}.pdf')
else:
plt.savefig(f'{type}_diversity_EMNIST_C30_L2_{l2_value}_only_user_ord{Norm_ord_L}.pdf')
plt.show()
###### C=47
plt.bar(index,Var_list[4],width,color='#756bb1',tick_label = name_list, hatch=hatch_list[0],alpha=0.6)
plt.bar(index+width,Var_list[5],width,color='#c51b8a',hatch=hatch_list[1])
Legend_name = ['FedAvg','Grouping-based']
font_size = 29
plt.yscale('log')
plt.yticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.xticks(fontproperties = 'Times New Roman', size = font_size-10)
plt.ylabel('Gradient diversity', fontdict={'family' : 'Times New Roman', 'size' : font_size})
plt.xlabel('epoch', fontdict={'family' : 'Times New Roman', 'size' : font_size})
if l2_value == '1':
plt.ylim([1.0,49.0])
else:
if only_user == '1':
plt.ylim([1.0000,7.20025])
else:
plt.ylim([1.00001,7.20025])
plt.grid(True, linestyle = "-.", linewidth = "0.15")
if l2_value == '1':
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
else:
plt.legend(Legend_name,labelspacing=0.2, loc=4,fontsize=18.2, ncol=1)
plt.tight_layout()
if 'ord_1' in dir_root:
Norm_ord_L = 1
else:
Norm_ord_L = 2
if only_user == '0':
plt.savefig(f'{type}_diversity_EMNIST_C47_L2_{l2_value}_all_ord{Norm_ord_L}.pdf')
else:
plt.savefig(f'{type}_diversity_EMNIST_C47_L2_{l2_value}_only_user_ord{Norm_ord_L}.pdf')
plt.show()