-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathgeocoding-with-r.R
113 lines (87 loc) · 3.31 KB
/
geocoding-with-r.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
### Geocoding and mapping with R ###
# This script corresponds with a blog post
# which can be found at https://www.jessesadler.com/post/geocoding-with-r/
library(tidyverse)
library(ggmap)
# Load the data
letters <- read_csv("data/correspondence-data-1585.csv")
### Geocode the data ###
sources <- distinct(letters, source)
destinations <- distinct(letters, destination)
cities <- full_join(sources, destinations, by = c("source" = "destination"))
cities <- rename(cities, place = source)
##############################################
## Alternative way to get cities data frame ##
##############################################
sources <- letters %>%
distinct(source) %>%
rename(place = source)
destinations <- letters %>%
distinct(destination) %>%
rename(place = destination)
cities <- full_join(sources, destinations, by = "place")
# Convert to data frame
cities_df <- as.data.frame(cities)
### Geocode function ###
locations_df <- mutate_geocode(cities_df, place)
# Back to tibble
locations <- as_tibble(locations_df)
library(sf)
library(mapview)
# sf points
locations_sf <- st_as_sf(locations, coords = c("lon", "lat"), crs = 4326)
# Mapview map
mapview(locations_sf)
# Save locations data
write_csv(locations, "data/locations.csv")
### Mapping with ggmap ###
geocode("mannheim")
map <- get_googlemap(center = c(8.4, 49.5), zoom = 6)
# Black and white styled map
bw_map <- get_googlemap(center = c(8.4, 49.5), zoom = 6,
color = "bw",
style = "feature:road|visibility:off&style=element:labels|visibility:off&style=feature:administrative|visibility:off")
# Locations map
ggmap(bw_map) +
geom_point(data = locations, aes(x = lon, y = lat))
### Adding data with dplyr ###
per_source <- letters %>%
group_by(source) %>%
summarise(count = n()) %>%
arrange(desc(count))
per_destination <- letters %>%
group_by(destination) %>%
summarise(count = n()) %>%
arrange(desc(count))
# Join locations to source and destination data
geo_per_source <- left_join(per_source, locations, by = c("source" = "place"))
geo_per_destination <- left_join(per_destination, locations, by = c("destination" = "place"))
## Data map 1 ##
ggmap(bw_map) +
geom_point(data = geo_per_destination,
aes(x = lon, y = lat), color = "red") +
geom_point(data = geo_per_source,
aes(x = lon, y = lat), color = "purple")
## Data map 2 ##
ggmap(bw_map) +
geom_point(data = geo_per_destination,
aes(x = lon, y = lat, size = count),
color = "red", alpha = 0.5) +
geom_point(data = geo_per_source,
aes(x = lon, y = lat, size = count),
color = "purple", alpha = 0.5)
## Data map 3 ##
ggmap(bw_map) +
geom_point(data = geo_per_destination,
aes(x = lon, y = lat, size = count, color = "Destination"),
alpha = 0.5) +
geom_point(data = geo_per_source,
aes(x = lon, y = lat, size = count, color = "Source"),
alpha = 0.5) +
scale_color_manual(values = c(Destination = "red", Source = "purple")) +
scale_size_continuous(range = c(2, 9)) +
geom_text_repel(data = locations, aes(x = lon, y = lat, label = place)) +
labs(title = "Correspondence of Daniel van der Meulen, 1585",
size = "Letters",
color = NULL) +
guides(color = guide_legend(override.aes = list(size = 6)))