-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
387 lines (344 loc) · 12.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import pathlib
from typing import Optional
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html
from dash.dependencies import Input, Output, State
from geopy import Location
from geopy.geocoders import Nominatim
from plotly.graph_objs import Figure
import koffie_frontend_challenge
def fetch_data(file_path: pathlib.Path) -> pd.DataFrame:
df = pd.read_parquet(file_path)
return df.copy()
def format_name(name: str) -> str:
"""
A method that simply replaces the _ character with a space and
title-cases a column name in the dataframe for display purposes
:param name: The string to convert to title case
:return: A title-cased, properly spaced string.
"""
return name.replace("_", " ").title()
def create_variable_map(
lat: Optional[float] = None, lon: Optional[float] = None
) -> Figure:
"""
This method dynamically creates a map. If a point is passed in via the
lat and lon args then it will center the map on that point and zoom in.
If nothing is passed in then the map is just a map of the USA.
:param lat: Optional latitude parameter of the point to display on the map
:param lon: Optional longitude parameter of the point to display on the map
:return: A plotly.graph_objects Figure object
"""
# By default we want a marker size of 20 and a zoom of 6
marker = dict(size=20)
zoom = 6
# If we don't have a lat _or_ long then we just want to center the map on
# the USA and zoom out.
if not lat or not lon:
marker["size"] = 0
lat = 37.0902
lon = -95.7129
zoom = 2
# Create the figure and set the layout
fig = go.Figure(go.Scattermapbox(lat=[lat], lon=[lon], marker=marker))
fig.update_layout(
mapbox=dict(
style="open-street-map",
zoom=zoom,
center=dict(lat=lat, lon=lon),
),
height=600,
)
return fig
def create_static_map(df: pd.DataFrame) -> Figure:
"""
This method simply aggregates the data by state and displays the
results on a Choropleth map. I'm not sure _exactly_ what the
dataset represents so I'm just assuming that the state listed is a
truck's state of registration.
:param df: The dataframe of all data from `sample.parquet`
:return: A plotly.graph_object Figure
"""
# Aggregate the dataframe by state
data = df.value_counts(subset=["STATE"])
# Fetch all of the locations in the index
locations = [x[0] for x in data.index.tolist()]
# Create the figure and set the layout
fig = go.Figure(
data=go.Choropleth(
locations=locations,
z=data,
locationmode="USA-states",
colorscale="Sunset",
)
)
fig.update_layout(geo_scope="usa")
return fig
def geocode(val: str) -> Location:
"""
There is *NO* error handling/checking on this. In a short time-frame I'm
just crossing my fingers and hoping this works most of the time. With more
time I would handle edge cases and not founds, but this is a rabbit hole I
don't really want to go down right now.
:param val: A string that _should_ be in the format of <city>, <state>.
:return: A `geopy` Location element
"""
geolocator = Nominatim(user_agent="test_app")
return geolocator.geocode(val)
def create_bar_chart(df: pd.DataFrame, chart_type: str) -> Figure:
"""
:param df: The dataframe of all data from `sample.parquet`
:param chart_type: Can be either "MAKE" or "MODEL_YEAR". Can add more as needed.
:return: A plotly.graph_object Figure (express calls graph_object)
"""
if chart_type != "MAKE" and chart_type != "MODEL_YEAR":
raise ValueError("Must be either 'MAKE' or 'MODEL_YEAR'")
return px.bar(df[chart_type].value_counts().sort_index())
# Initialize params, fetch data, instantiate app
PAGE_SIZE = 20
curr_dir = pathlib.Path(__file__).resolve().parent
df = fetch_data(curr_dir / "sample.parquet")
size = df.size
clicks = 0
columns = [{"name": format_name(i), "id": i} for i in df.columns]
app = Dash(__name__)
server = app.server
"""
Since I've never worked with Plotly and Dash I wasn't sure just
how much of the markup generation should have been abstracted
out so I just left it all in here. The main structure of the
page is as follows:
<body>
<div id="main-header">
<div>
<h1 id="main-title"></h1>
<h2 class="sub-title"></h2>
<h2 class="sub-title"></h2>
</div>
<div id="table-search">
<div id="text-search">
<label for="column-input"></label>
<input id="column-input" />
</div>
<div>
<label for="column-dropdown"></label>
<select id="column-dropdown></select>
</div>
<button>Submit</button>
</div>
</div>
<TableComponent /> <-- This is the React component included
<div id="map">
<div id="map-container">
<h3 id="map-title"></h3>
<div id="map-figure"></div>
</div>
</div>
<div id="bar-charts">
<div class="jvp-chart">
<h3></h3>
<div id="year-chart"></div>
</div>
<div class="jvp-chart">
<h3></h3>
<div id="make-bar-chart"></div>
</div>
<div class="jvp-chart">
<h3></h3>
<div id="static-map-figure"></div>
</div>
</div>
</body>
"""
app.layout = html.Div(
children=[
html.Div(
id="main-header",
children=[
html.Div(
children=[
html.H1(
id="main-title",
children=[
html.Span(
"Interactive Table of ",
className="main-title-element",
),
html.Code(
"sample.parquet", className="main-title-element"
),
html.Span(" dataset.", className="main-title-element"),
],
),
html.H2("Click on any column to sort", className="sub-title"),
html.H2(
"Click on any row to display the location in the map below the table",
className="sub-title",
),
]
),
html.Div(
id="table-search",
children=[
html.Div(
id="text-search",
children=[
html.Label("Search Text", htmlFor="column-input"),
dcc.Input(
id="column-input",
type="text",
),
],
),
html.Div(
children=[
html.Label("Columns", htmlFor="column-dropdown"),
dcc.Dropdown(
list(map(lambda x: x.get("name"), columns)),
columns[0].get("name"),
id="column-dropdown",
),
]
),
html.Button("Submit", id="submit-button", n_clicks=0),
],
),
],
),
koffie_frontend_challenge.TableComponent(
data=df.to_dict("records"),
id="datatable",
columns=columns,
page_current=0,
page_size=PAGE_SIZE,
total_results=size,
ascending=0,
),
html.Hr(className="divider"),
html.Div(
id="map",
children=[
html.Div(
id="map-container",
children=[
html.H3(id="map-title"),
dcc.Graph(id="map-figure", figure={}),
],
)
],
),
html.Div(
id="bar-charts",
children=[
html.Div(
className="jvp-chart",
children=[
html.H3("Vehicle Count by Model Year"),
dcc.Graph(
id="year-chart",
figure=create_bar_chart(df, "MODEL_YEAR"),
),
],
),
html.Div(
className="jvp-chart",
children=[
html.H3("Vehicle Count by Make"),
dcc.Graph(
id="make-bar-chart",
figure=create_bar_chart(df, "MAKE"),
),
],
),
html.Div(
className="jvp-chart",
children=[
html.H3("Map of reports per US state"),
dcc.Graph(id="static-map-figure", figure=create_static_map(df)),
],
),
],
),
]
)
@app.callback(
[Output("map-title", "children"), Output("map-figure", "figure")],
Input("datatable", "location"),
State("datatable", "report_number"),
)
def update_dash_map(location, report_number):
"""
This is the code that just updates the map with the passed in location.
It geocodes it and tries to update the map with the returned lat and lon
:param location: A <city>, <state> style string
:param report_number: The report number associated with the clicked row
:return: Tuple[str, Figure] a string to indicate what was found and an
updated figure to refresh the necessary location on the page.
"""
if not location:
return "Click the Table to Display a Location", create_variable_map()
geocoded = geocode(location)
# This is what constitutes "error handling" for a location not found.
if not geocoded:
return f"Location titled {location} was not found", create_variable_map()
fig = create_variable_map(geocoded.latitude, geocoded.longitude)
return f"Report Number {report_number}: {location}", fig
@app.callback(
[Output("datatable", "data"), Output("datatable", "page_current")],
[
Input("datatable", "page_current"),
Input("datatable", "column"),
Input("datatable", "ascending"),
Input("submit-button", "n_clicks"),
State("column-dropdown", "value"),
State("column-input", "value"),
],
)
def update_table(page_current, column, ascending, n_clicks, dropdown, input_val):
"""
This method handles all dataframe manipulation:
- Filtering by a text value in a given column
- Sorting a single column ascending or descending
- Pagination
:param page_current: The current page of the table
:param column: The (optional) column that is being sorted
:param ascending: (Optional) whether the sort is ascending (1), descending (-1), or none(0)
:param n_clicks: I think this is just needed to listen to button clicks
:param dropdown: The value of the #column-dropdown select element
:param input_val: The value for which the user is searching in the aforementioned column
:return: An updated dataframe and the current page
"""
data = df.copy()
"""
Filtering
"""
# Check to see if the event that triggered the callback was a click on the submit button
if clicks != n_clicks:
if input_val is not None:
# If we have an input value then get the ID of the selected column
_col = [x.get("id") for x in columns if x.get("name") == dropdown]
if _col[0]:
# If the column exists then do a case-insensitive str.contains on the column
# in the dataframe
data = data[data[_col[0]].str.contains(input_val, case=False)]
"""
Sorting
"""
if ascending == -1 and column is not None:
data.sort_values(column, ascending=False, inplace=True)
if ascending == 1 and column is not None:
data.sort_values(column, inplace=True)
"""
Pagination
"""
# Whatever the current page, return only a PAGE_SIZE sized slice of the dataframe
return (
data.iloc[page_current * PAGE_SIZE : (page_current + 1) * PAGE_SIZE].to_dict(
"records"
),
page_current,
)
if __name__ == "__main__":
app.run_server(debug=True)