-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegen-app.py
72 lines (59 loc) · 2.56 KB
/
codegen-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_community.callbacks import StreamlitCallbackHandler
import streamlit as st
import requests
import time
model_service = os.getenv("MODEL_ENDPOINT", "http://localhost:8001")
model_service = f"{model_service}/v1"
model_service_bearer = os.getenv("MODEL_ENDPOINT_BEARER")
request_kwargs = {}
if model_service_bearer is not None:
request_kwargs = {"headers": {"Authorization": f"Bearer {model_service_bearer}"}}
@st.cache_resource(show_spinner=False)
def checking_model_service():
start = time.time()
print("Checking Model Service Availability...")
ready = False
while not ready:
try:
request = requests.get(f'{model_service}/models', **request_kwargs)
if request.status_code == 200:
ready = True
except:
pass
time.sleep(1)
print("Model Service Available")
print(f"{time.time()-start} seconds")
with st.spinner("Checking Model Service Availability..."):
checking_model_service()
st.title("Code Generation App")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant",
"content": "How can I help you?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
model_name = os.getenv("MODEL_NAME", "")
llm = ChatOpenAI(base_url=model_service,
model=model_name,
api_key="EMPTY" if model_service_bearer is None else model_service_bearer,
streaming=True)
# Define the Langchain chain
prompt = ChatPromptTemplate.from_template("""You are an helpful code assistant that can help developer to code for a given {input}.
Generate the code block at first, and explain the code at the end.
If the {input} is not making sense, please ask for more clarification.""")
chain = (
{"input": RunnablePassthrough()}
| prompt
| llm
)
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").markdown(prompt)
st_callback = StreamlitCallbackHandler(st.container())
response = chain.invoke(prompt, {"callbacks": [st_callback]})
st.chat_message("assistant").markdown(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
st.rerun()