-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_on_test.py
99 lines (73 loc) · 3.31 KB
/
benchmark_on_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import normalize
import torch
from torchvision import transforms
from torch.autograd import Variable
from model.vgg_siamese2 import vgg16_basenet, SiameseNetBaseline
from libs.firearm_data import QuerySet
from libs import custom_transform
from util.eval_metric import average_precision, recall_at_k
def main():
position = [1, 2, 4, 8, 16, 32]
feature_dim = [16, 32, 64, 128, 256, 512]
torch.cuda.set_device(0)
# do not do data augmentation on validation set
val_trans = transforms.Compose([
custom_transform.Resize(384),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
val_dir = "data/firearm-dataset/test"
val_set = QuerySet(root=val_dir, transform=val_trans)
cls_model_dir = "model/checkpoint/vgg16_cls/model_best.pth.tar"
embed_net = vgg16_basenet(pretrained=True, checkpoint_dir=cls_model_dir)
sim_net = SiameseNetBaseline(embed_net).cuda()
model_dir = "model/checkpoint/vgg16_retr_from_cls/model_best.pth.tar"
checkpoint = torch.load(model_dir)
sim_net.load_state_dict(checkpoint['state_dict'])
sim_net.eval()
database_feat = []
if os.path.exists("database_feat.pth"):
database_feat = torch.load("database_feat.pth")
else:
for i in range(len(val_set.database_imgs)):
img = val_set.get_img(i, query=False)
img = Variable(img.unsqueeze(0).cuda(), volatile=True)
feat = sim_net.forward_once(img)
database_feat.append(feat.data)
database_feat = torch.cat(database_feat, dim=0)
torch.save(database_feat, "database_feat.pth")
# database_feat size: N*D (N is sample number, D is feature dim)
database_feat = database_feat.cpu().numpy()
for dim in feature_dim:
# pca on database feature
pca = PCA(n_components=dim, whiten=False)
new_feat = pca.fit_transform(database_feat)
new_feat = normalize(new_feat)
aps = []
scores = np.zeros(len(position))
for query_id in range(len(val_set.query_imgs)):
query_img = val_set.get_img(query_id, query=True)
query_img = Variable(query_img.unsqueeze(0).cuda(), volatile=True)
query_feat = sim_net.forward_once(query_img)
# pca on query feature
query_feat = pca.transform(query_feat.data.cpu().numpy())
query_feat = normalize(query_feat)
similarity = (query_feat * new_feat).sum(axis=1)
# get idx in descending order of similarity
idx = similarity.argsort()[::-1]
ap = average_precision(list(idx), val_set.gt_info[query_id])
aps.append(ap)
# print("query {}, ap is {:.3f}".format(query_id, ap))
single_score = recall_at_k(position, list(idx),
val_set.gt_info[query_id])
scores += np.array(single_score)
scores /= len(val_set.query_imgs)
print("feature dim: {}, mAP: {}".format(dim, sum(aps)/len(aps)))
print("Recall@k: {}".format(scores))
# aps = np.array(aps)
# np.save("comparison_feature/siamese_firearm_cls_finetuned_vgg", aps)
if __name__ == "__main__":
main()