-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (47 loc) · 1.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from model import Model
import numpy as np
from mnist import MNIST
from dimensionality_reduction import PCA
from time import time
import matplotlib.pyplot as plt
# --- Load the mnist data set ---
print("Loading data...")
mndata = MNIST('mnist-data', return_type='numpy')
X_train, y_train = mndata.load_training()
X_test, y_test = mndata.load_testing()
print('Running PCA...')
# --- Centering the data (scaling) ---
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_test = (X_test.astype(np.float32) - 127.5) / 127.5
# --- Dimensionality reduction ---
X = np.concatenate((X_train, X_test), axis=0)
preserve_var = 0.99
pca = PCA()
X_reduced = pca.reduce_dims(X, preserve_var=preserve_var)
print(f"--> Data reduced from {X.shape[1]} dimensions to {X_reduced.shape[1]} with {preserve_var*100}% of the variance preserved")
input()
# # --- Splitting Data ---
early_stopping = False
X_val = None
y_val = None
if early_stopping:
X_train = X_reduced[:50000].astype(np.float32)
X_test = X_reduced[60000:].astype(np.float32)
X_val = X_reduced[50000:60000].astype(np.float32)
y_val = y_train[50000:60000]
y_train = y_train[:50000]
else:
X_train = X_reduced[:60000].astype(np.float32)
X_test = X_reduced[60000:].astype(np.float32)
# --- Create and train model ---
model = Model(learning_rate=0.007, decay=0.00001, momentum=0.9)
model.add_layer(X_train.shape[1], 128, L2w=5e-4, L2b=5e-4)
model.add_layer(128, 10)
model.link_nodes()
print("Training model...\n")
t0 = time()
model.train(X_train, y_train, epochs=15, batch=64, early_stopping=early_stopping, X_val=X_val, y_val=y_val)
t1 = time()
# model.save('numeric_mnist.model')
acc = model.evaluate(X_test, y_test)
print(f"\nModel trained for {'{:.2f}'.format(t1 - t0)} seconds, and scored {acc*100}% accuracy on the testing set.\n")