-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreg.py
605 lines (573 loc) · 20 KB
/
reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# Original reg.py
from IPython import get_ipython
ipython = get_ipython()
ipython.magic("matplotlib widget")
import numpy as np
pi = np.pi
sqrt = np.sqrt
dot = lambda x, y: x.dot(y)
norm = lambda x: np.linalg.norm(x)
var = lambda t: ((t - t.mean())**2).mean()
def vec(*args):
if len(args) == 1:
return np.array(args[0], dtype=np.float64)
else:
return np.array(args, dtype=np.float64)
from IPython.display import display, Latex, Markdown
import ipywidgets as widgets
from ipywidgets import Select, Label, HTML, Layout
import matplotlib.pyplot as plt
# Use the widget manager from Google Colab
try:
import google.colab
from google.colab import output
output.enable_custom_widget_manager()
except:
pass
default_dataset = "ice_cream"
scatter_size = 8.333
inside_layout = dict(height="90%", width="90%")
grid_layout = dict(height="2.0in", width="2.0in")
scatter_layout = (6.0, 4.0)
stage = -1
def select_data():
global stage, dataset, xname, xdata, yname, ydata, x, y, xlim, ylim, lock_ds
stage = 0
lock_ds = False
dataset = default_dataset
select_dataset = Select(
options=datasets.keys(),
value=dataset,
# description='Dataset:',
disabled=False,
layout=Layout(**inside_layout)
)
# label_dataset = Label(value=datasets[dataset]["text"], layout=Layout(**grid_layout))
# label_dataset = HTML(value="Description: "+datasets[dataset]["text"], layout=Layout(**grid_layout))
label_dataset = widgets.Output(layout=Layout(**inside_layout))
with label_dataset:
# display(Markdown("Description: " + datasets[dataset]["text"]))
display(Markdown(datasets[dataset]["text"]))
def update_dataset(change):
global dataset, xname, xdata, yname, ydata, x, y, xlim, ylim, lock_ds
dataset = change.new
# label_dataset.value = "Description: " + datasets[dataset]["text"]
label_dataset.clear_output()
with label_dataset:
# display(Markdown("Description: " + datasets[dataset]["text"]))
display(Markdown(datasets[dataset]["text"]))
keys = list(datasets[dataset]["axes"].keys())
xname, yname = keys[0], keys[1]
# Start critical region
lock_ds = True
select_xaxis.options = keys
# Make a state change
select_xaxis.value = None
select_xaxis.value = xname
select_yaxis.options = keys
select_yaxis.value = None
select_yaxis.value = yname
lock_ds = False
# End critical region
draw_sc()
fig.canvas.draw()
fig.canvas.flush_events()
select_dataset.observe(update_dataset, names="value")
keys = list(datasets[dataset]["axes"].keys())
xname, yname = keys[0], keys[1]
xdata, ydata = datasets[dataset]["axes"][xname], datasets[dataset]["axes"][yname]
select_xaxis = Select(
options=keys,
value=xname,
# description='x axis:',
disabled=False,
# layout=Layout(**grid_layout)
layout=Layout(**inside_layout)
)
def update_xaxis(change):
global xname, xdata, x, xlim, lock_ds
if change.new is not None:
# Global race condition
if not lock_ds:
xname = change.new
xdata = datasets[dataset]["axes"][xname]
x = xdata["vec"]
xlim = xdata["range"]
if not lock_ds:
draw_sc()
fig.canvas.draw()
fig.canvas.flush_events()
select_yaxis = Select(
options=keys,
value=yname,
# description='y axis:',
disabled=False,
# layout=Layout(**grid_layout)
layout=Layout(**inside_layout)
)
def update_yaxis(change):
global yname, ydata, y, ylim, lock_ds
if change.new is not None:
if not lock_ds:
yname = change.new
ydata = datasets[dataset]["axes"][yname]
y = ydata["vec"]
ylim = ydata["range"]
if not lock_ds:
draw_sc()
fig.canvas.draw()
fig.canvas.flush_events()
select_xaxis.observe(update_xaxis, names="value")
select_yaxis.observe(update_yaxis, names="value")
x, y = xdata["vec"], ydata["vec"]
xlim, ylim = xdata["range"], ydata["range"]
info_sc = [None]
def draw_sc():
if info_sc[0] is not None:
info_sc[0].remove()
info_sc[0] = ax.scatter(x, y, s=scatter_size, color="black", zorder=10)
ax.set_xlabel(xdata["text"])
ax.set_ylabel(ydata["text"])
if xlim is not None:
ax.set_xlim(*xlim)
else:
ax.autoscale_view(False, True, False)
if ylim is not None:
ax.set_ylim(*ylim)
else:
ax.autoscale_view(False, False, True)
with plt.ioff():
fig = plt.figure(figsize=scatter_layout)
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
ax = fig.add_subplot(1, 1, 1)
ax.set_clip_on(True)
ax.grid(visible=True, which="major", linewidth=0.5)
ax.grid(visible=True, which="minor", linewidth=0.5, linestyle=":")
ax.minorticks_on()
draw_sc()
fig.tight_layout()
# display(widgets.HBox([widgets.VBox([widgets.HBox([select_dataset, label_dataset]), widgets.HBox([select_xaxis, select_yaxis])]), fig.canvas]))
# display(widgets.VBox([widgets.HBox([select_dataset, label_dataset]), widgets.HBox([select_xaxis, select_yaxis]), fig.canvas]))
# display(widgets.HBox([widgets.VBox([widgets.VBox([Label(value="Description:"), select_dataset], layout=Layout(**grid_layout)), select_xaxis]), widgets.VBox([label_dataset, select_yaxis]), fig.canvas]))
display(widgets.HBox([
widgets.VBox([
widgets.HBox([
widgets.VBox([Label(value="Dataset: "), select_dataset], layout=Layout(**grid_layout)),
widgets.VBox([Label(value="Description: "), label_dataset], layout=Layout(**grid_layout))
]),
widgets.HBox([
widgets.VBox([Label(value="Horizontal axis: "), select_xaxis], layout=Layout(**grid_layout)),
widgets.VBox([Label(value="Vertical axis: "), select_yaxis], layout=Layout(**grid_layout))
])
]),
fig.canvas
]))
# Inject variables
def get_x():
global x
return x
def get_y():
global y
return y
def get_one():
global x
return np.ones_like(x)
# Vector serializer with automatic abbreviation
def vec_to_str(vec, row=True, fmt=".2f", disp=8):
if row:
if vec.size > disp:
return "\\begin{bmatrix} " + " \\\\ ".join(f"{{:{fmt}}}".format(val) for val in vec.ravel()[:disp-2]) + " \\\\ \\vdots \\\\ " + f"{{:{fmt}}}".format(vec.ravel()[-1]) + " \\end{bmatrix}"
else:
return "\\begin{bmatrix} " + " \\\\ ".join(f"{{:{fmt}}}".format(val) for val in vec) + " \\end{bmatrix}"
else:
if vec.size > disp:
return "\\begin{bmatrix} " + " & ".join(f"{{:{fmt}}}".format(val) for val in vec.ravel()[:disp-2]) + " & \\cdots & " + f"{{:{fmt}}}".format(vec.ravel()[-1]) + " \\end{bmatrix}"
else:
return "\\begin{bmatrix} " + " & ".join(f"{{:{fmt}}}".format(val) for val in vec) + " \\end{bmatrix}"
def print_rerun_warning():
display(HTML("<span style=\"color: red;\">Warning: Something before this cell was changed. Please rerun the cells one by one from the cell right after data selection.</span>"))
def print_1(x, y, i):
global stage
stage = 1
display(Markdown("$ \\mathbf{X} = " + vec_to_str(x) + " $, $ \\mathbf{Y} = " + vec_to_str(y) + " $, $ \\mathbf{1} = " + vec_to_str(i) + " $"))
def print_2(c, xh):
global stage
if stage <= 0:
print_rerun_warning()
stage = 2
display(Markdown("$ c = " + "{:.2f}".format(c) + " $, and $ \\widehat{\\mathbf{X}} = \\mathbf{X} - \\mathbf{Proj}_{\\mathbf{1}} \\mathbf{X} = \\mathbf{X} - c \\mathbf{1} = " + vec_to_str(xh) + " $"))
def print_3(d, e):
global stage
if stage <= 1:
print_rerun_warning()
stage = 3
display(Markdown("$ \\mathbf{Proj}_{W} \\mathbf{Y} = d \\widehat{\\mathbf{X}} + e \\mathbf{1} $ where $ d = " + "{:.2f}".format(d) + " $ and $ e = " + "{:.2f}".format(e) + " $"))
def print_4(m, b):
global stage
if stage <= 2:
print_rerun_warning()
stage = 4
display(Markdown(
"$ \\mathbf{Proj}_W \\mathbf{Y} = m \\mathbf{X} + b \\mathbf{1} $ where $ m = " + "{:.2f}".format(m) + " $ and $ b = "
+ "{:.2f}".format(b) + " $, so the best fit line is $ y = "
+ "{:.2f}".format(m) + " x + " + "{:.2f}".format(b) + " $"))
# def print_5(r2):
# display(Markdown("$ R^2 = " + "{:.4f}".format(r2) + " $"))
def draw_best_fit_line(m, b, m_guess=None, b_guess=None):
global stage
if stage <= 3:
print_rerun_warning()
stage = 5
with plt.ioff():
fig = plt.figure(figsize=scatter_layout)
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
ax = fig.add_subplot(1, 1, 1)
ax.set_clip_on(True)
ax.grid(visible=True, which="major", linewidth=0.5)
ax.grid(visible=True, which="minor", linewidth=0.5, linestyle=":")
ax.minorticks_on()
ax.scatter(x, y, s=scatter_size, color="black")
ax.plot((xlim[0], xlim[1]), (m*xlim[0]+b, m*xlim[1]+b), linewidth=1.0, color="blue", label=f"$ y = {m:.2f} x + {b:.2f} $")
if m_guess is not None and b_guess is not None:
ax.plot((xlim[0], xlim[1]), (m_guess*xlim[0]+b_guess, m_guess*xlim[1]+b_guess), linewidth=1.0, color="red", label=f"$ y = {m_guess:.2f} x + {b_guess:.2f} $")
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_xlabel(xdata["text"])
ax.set_ylabel(ydata["text"])
ax.legend()
plt.show()
def draw_best_fit_quadratic(a, b, c, a_guess=None, b_guess=None, c_guess=None):
global stage
if stage <= 3:
print_rerun_warning()
stage = 5
with plt.ioff():
fig = plt.figure(figsize=scatter_layout)
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
ax = fig.add_subplot(1, 1, 1)
ax.set_clip_on(True)
ax.grid(visible=True, which="major", linewidth=0.5)
ax.grid(visible=True, which="minor", linewidth=0.5, linestyle=":")
ax.minorticks_on()
ax.scatter(x, y, s=scatter_size, color="black")
xds = np.linspace(xlim[0], xlim[1], 100)
ax.plot(xds, a + b*xds + c*xds**2, linewidth=1.0, color="green", label=f"$ y = {a:.2f} + {b:.2f} x + {c:.2f} x^2 $")
if a_guess is not None and b_guess is not None and c_guess is not None:
ax.plot(xds, a_guess + b_guess*xds + c_guess*xds**2, linewidth=1.0, color="red", label=f"$ y = {a_guess:.2f} + {b_guess:.2f} x + {c_guess:.2f} x^2 $")
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_xlabel(xdata["text"])
ax.set_ylabel(ydata["text"])
ax.legend()
plt.show()
# Original regdata.py
import requests
import pandas as pd
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
quartet_url = "https://raw.githubusercontent.com/jcostacurta11/ssea/main/quartet.txt"
with open("quartet.txt", "wb") as f:
r = requests.get(quartet_url, allow_redirects=True)
f.write(r.content)
# Grab datasets
concrete_df = pd.read_csv('http://raw.githubusercontent.com/jcostacurta11/ssea/main/concrete_data_ssea.csv')
diabetes_df = pd.read_csv('http://raw.githubusercontent.com/jcostacurta11/ssea/main/diabetes_data_ssea.csv')
nyse_df = pd.read_csv('http://raw.githubusercontent.com/jcostacurta11/ssea/main/nyse_data_ssea.csv')
spotify_df = pd.read_csv('http://raw.githubusercontent.com/jcostacurta11/ssea/main/spotify_data_ssea.csv')
nba_df = pd.read_csv('http://raw.githubusercontent.com/jcostacurta11/ssea/main/nba_data_ssea.csv')
quartet = np.loadtxt("quartet.txt").T
datasets = {
"ice_cream": # Dataset id, shown in the selection menu
{
"text": "Ice cream example from the handout", # Description, shown when selected, LaTeX now supported
"axes":
{
"temperature": # Axis id, shown in the selection menu
{
"text": "Temperature", # Axis title, shown in the graph, LaTeX supported
"vec": vec(60, 72, 67, 81), # Data in numpy.array
"range": (55.0, 95.0) # Range, or just "auto"
},
"cones_sold":
{
"text": "Cones sold",
"vec": vec(126, 150, 140, 160),
"range": (100.0, 200.0)
}
}
},
# "ice_cream_old": # Dataset id, shown in the selection menu
# {
# "text": "Ice cream example from the handout", # Description, shown when selected, LaTeX now supported
# "axes":
# {
# "temperature": # Axis id, shown in the selection menu
# {
# "text": "Temperature", # Axis title, shown in the graph, LaTeX supported
# "vec": vec(60, 72, 67, 80), # Data in numpy.array
# "range": (55.0, 95.0) # Range, or just "auto"
# },
# "cones_sold":
# {
# "text": "Cones sold",
# "vec": vec(63, 76, 70, 80),
# "range": (50.0, 100.0)
# }
# }
# },
"textbook1":
{
"text": "Example 7.3.2 from the MATH 51 textbook",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": vec(-5.0, -4.0, -3.0, -2.0, -1.0),
"range": "auto"
},
"y":
{
"text": "$y$ axis",
"vec": vec(-5.0, 3.0, 1.0, -3.0, 4.0),
"range": "auto"
}
}
},
"textbook2":
{
"text": "Example 7.3.3 from the MATH 51 textbook",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": vec(-1.0, 0.0, 2.0, 7.0),
"range": "auto"
},
"y":
{
"text": "$y$ axis",
"vec": vec(5.0, 1.0, -3.0, -4.0),
"range": "auto"
},
}
},
"concrete":
{
"text": "Concrete compressive strength vs. components ([Link](https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength))",
"axes":
{
"cement":
{
"text": "Cement (kg in a m3 mixture)",
"vec": concrete_df['cement'].values,
"range": "auto"
},
"water":
{
"text": "Water (kg in a m3 mixture)",
"vec": concrete_df['water'].values,
"range": "auto"
},
"strength":
{
"text": "Concrete compressive strength (MPa)",
"vec": concrete_df['strength'].values,
"range": "auto"
}
}
},
"diabetes":
{
"text": "Factors contributing to diabetes progression ([Link](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html))",
"axes":
{
"ltg":
{
"text": "Serum triglycerides level",
"vec": diabetes_df['ltg'].values,
"range": "auto"
},
"glu":
{
"text": "Blood sugar level",
"vec": diabetes_df['glu'].values,
"range": "auto"
},
"y":
{
"text": "Disease progression over one year",
"vec": diabetes_df['y'].values,
"range": "auto"
}
}
},
"stock":
{
"text": "New York Stock Exchange historical prices ([Link](https://www.kaggle.com/datasets/dgawlik/nyse))",
"axes":
{
"PYPL":
{
"text": "PYPL",
"vec": nyse_df[nyse_df.symbol=="PYPL"].close.values,
"range": "auto"
},
"MSFT":
{
"text": "MSFT",
"vec": nyse_df[nyse_df.symbol=="MSFT"].close.values,
"range": "auto"
},
"AAPL":
{
"text": "AAPL",
"vec": nyse_df[nyse_df.symbol=="AAPL"].close.values,
"range": "auto"
}
}
},
"nba2223":
{
"text": "2022-2023 NBA Player Stats ([Link](https://www.kaggle.com/datasets/vivovinco/20222023-nba-player-stats-regular))",
"axes":
{
"TOV":
{
"text": "Turnovers per game",
"vec": nba_df['TOV'].values,
"range": "auto"
},
"TRB":
{
"text": "Total rebounds per game",
"vec": nba_df['TRB'].values,
"range": "auto"
},
"PTS":
{
"text": "Points per game",
"vec": nba_df['PTS'].values,
"range": "auto"
}
}
},
"spotify":
{
"text": "Spotify top 100 songs dataset (extracted from [Link](https://www.kaggle.com/datasets/amitanshjoshi/spotify-1million-tracks))",
"axes":
{
"loudness":
{
"text": "Overall loudness of track in decibels",
"vec": spotify_df['loudness'].values,
"range": "auto"
},
"acousticness":
{
"text": "Confidence measure of track acousticness",
"vec": spotify_df['acousticness'].values,
"range": "auto"
},
"energy":
{
"text": "Perceptual measure of intensity and activity",
"vec": spotify_df['energy'].values,
"range": "auto"
}
}
},
"quartet1":
{
"text": "First panel of Anscombe's quartet ([Link](https://en.wikipedia.org/wiki/Anscombe%27s_quartet))",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": quartet[0, :],
"range": (3.0, 20.0)
},
"y":
{
"text": "$y$ axis",
"vec": quartet[1, :],
"range": (2.5, 13.5)
},
}
},
"quartet2":
{
"text": "Second panel of Anscombe's quartet ([Link](https://en.wikipedia.org/wiki/Anscombe%27s_quartet))",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": quartet[2, :],
"range": (3.0, 20.0)
},
"y":
{
"text": "$y$ axis",
"vec": quartet[3, :],
"range": (2.5, 13.5)
},
}
},
"quartet3":
{
"text": "Third panel of Anscombe's quartet ([Link](https://en.wikipedia.org/wiki/Anscombe%27s_quartet))",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": quartet[4, :],
"range": (3.0, 20.0)
},
"y":
{
"text": "$y$ axis",
"vec": quartet[5, :],
"range": (2.5, 13.5)
},
}
},
"quartet4":
{
"text": "Fourth panel of Anscombe's quartet ([Link](https://en.wikipedia.org/wiki/Anscombe%27s_quartet))",
"axes":
{
"x":
{
"text": "$x$ axis",
"vec": quartet[6, :],
"range": (3.0, 20.0)
},
"y":
{
"text": "$y$ axis",
"vec": quartet[7, :],
"range": (2.5, 13.5)
},
}
}
}
# Regularize
for ds_name in datasets:
ds = datasets[ds_name]
for ax_name in ds["axes"]:
ax = ds["axes"][ax_name]
vec = ax["vec"]
ax["vec"] = np.array(vec)
range = ax["range"]
if isinstance(range, str) and range == "auto":
delta = 0.1
vmin, vmax = np.min(vec), np.max(vec)
range = ((1.0+delta)*vmin - delta*vmax, (1.0+delta)*vmax - delta*vmin)
ax["range"] = range