-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmetrics.py
669 lines (617 loc) · 36.5 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import argparse
import json
import logging
import os
import pprint
from collections import Counter, defaultdict, namedtuple
from dataclasses import dataclass
from itertools import chain
from typing import Any, Callable, Dict, List, Set, Tuple
import numpy as np
import torch
from scipy.stats import entropy
from sklearn.metrics import accuracy_score, auc, average_precision_score, classification_report, precision_recall_curve, roc_auc_score
from rationale_benchmark.utils import (
Annotation,
Evidence,
annotations_from_jsonl,
load_jsonl,
load_documents,
load_flattened_documents
)
logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s')
# start_token is inclusive, end_token is exclusive
@dataclass(eq=True, frozen=True)
class Rationale:
ann_id: str
docid: str
start_token: int
end_token: int
def to_token_level(self) -> List['Rationale']:
ret = []
for t in range(self.start_token, self.end_token):
ret.append(Rationale(self.ann_id, self.docid, t, t+1))
return ret
@classmethod
def from_annotation(cls, ann: Annotation) -> List['Rationale']:
ret = []
for ev_group in ann.evidences:
for ev in ev_group:
ret.append(Rationale(ann.annotation_id, ev.docid, ev.start_token, ev.end_token))
return ret
@classmethod
def from_instance(cls, inst: dict) -> List['Rationale']:
ret = []
for rat in inst['rationales']:
for pred in rat.get('hard_rationale_predictions', []):
ret.append(Rationale(inst['annotation_id'], rat['docid'], pred['start_token'], pred['end_token']))
return ret
@dataclass(eq=True, frozen=True)
class PositionScoredDocument:
ann_id: str
docid: str
scores: Tuple[float]
truths: Tuple[bool]
@classmethod
def from_results(cls, instances: List[dict], annotations: List[Annotation], docs: Dict[str, List[Any]], use_tokens: bool=True) -> List['PositionScoredDocument']:
"""Creates a paired list of annotation ids/docids/predictions/truth values"""
key_to_annotation = dict()
for ann in annotations:
for ev in chain.from_iterable(ann.evidences):
key = (ann.annotation_id, ev.docid)
if key not in key_to_annotation:
key_to_annotation[key] = [False for _ in docs[ev.docid]]
if use_tokens:
start, end = ev.start_token, ev.end_token
else:
start, end = ev.start_sentence, ev.end_sentence
for t in range(start, end):
key_to_annotation[key][t] = True
ret = []
if use_tokens:
field = 'soft_rationale_predictions'
else:
field = 'soft_sentence_predictions'
for inst in instances:
for rat in inst['rationales']:
docid = rat['docid']
scores = rat[field]
key = (inst['annotation_id'], docid)
assert len(scores) == len(docs[docid])
if key in key_to_annotation :
assert len(scores) == len(key_to_annotation[key])
else :
#In case model makes a prediction on docuemnt(s) for which ground truth evidence is not present
key_to_annotation[key] = [False for _ in docs[docid]]
ret.append(PositionScoredDocument(inst['annotation_id'], docid, tuple(scores), tuple(key_to_annotation[key])))
return ret
def _f1(_p, _r):
if _p == 0 or _r == 0:
return 0
return 2 * _p * _r / (_p + _r)
def _keyed_rationale_from_list(rats: List[Rationale]) -> Dict[Tuple[str, str], Rationale]:
ret = defaultdict(set)
for r in rats:
ret[(r.ann_id, r.docid)].add(r)
return ret
def partial_match_score(truth: List[Rationale], pred: List[Rationale], thresholds: List[float]) -> List[Dict[str, Any]]:
"""Computes a partial match F1
Computes an instance-level (annotation) micro- and macro-averaged F1 score.
True Positives are computed by using intersection-over-union and
thresholding the resulting intersection-over-union fraction.
Micro-average results are computed by ignoring instance level distinctions
in the TP calculation (and recall, and precision, and finally the F1 of
those numbers). Macro-average results are computed first by measuring
instance (annotation + document) precisions and recalls, averaging those,
and finally computing an F1 of the resulting average.
"""
ann_to_rat = _keyed_rationale_from_list(truth)
pred_to_rat = _keyed_rationale_from_list(pred)
num_classifications = {k:len(v) for k,v in pred_to_rat.items()}
num_truth = {k:len(v) for k,v in ann_to_rat.items()}
ious = defaultdict(dict)
for k in set(ann_to_rat.keys()) | set(pred_to_rat.keys()):
for p in pred_to_rat.get(k, []):
best_iou = 0.0
for t in ann_to_rat.get(k, []):
num = len(set(range(p.start_token, p.end_token)) & set(range(t.start_token, t.end_token)))
denom = len(set(range(p.start_token, p.end_token)) | set(range(t.start_token, t.end_token)))
iou = 0 if denom == 0 else num / denom
if iou > best_iou:
best_iou = iou
ious[k][p] = best_iou
scores = []
for threshold in thresholds:
threshold_tps = dict()
for k, vs in ious.items():
threshold_tps[k] = sum(int(x >= threshold) for x in vs.values())
micro_r = sum(threshold_tps.values()) / sum(num_truth.values()) if sum(num_truth.values()) > 0 else 0
micro_p = sum(threshold_tps.values()) / sum(num_classifications.values()) if sum(num_classifications.values()) > 0 else 0
micro_f1 = _f1(micro_r, micro_p)
macro_rs = list(threshold_tps.get(k, 0.0) / n if n > 0 else 0 for k, n in num_truth.items())
macro_ps = list(threshold_tps.get(k, 0.0) / n if n > 0 else 0 for k, n in num_classifications.items())
macro_r = sum(macro_rs) / len(macro_rs) if len(macro_rs) > 0 else 0
macro_p = sum(macro_ps) / len(macro_ps) if len(macro_ps) > 0 else 0
macro_f1 = _f1(macro_r, macro_p)
scores.append({'threshold': threshold,
'micro': {
'p': micro_p,
'r': micro_r,
'f1': micro_f1
},
'macro': {
'p': macro_p,
'r': macro_r,
'f1': macro_f1
},
})
return scores
def score_hard_rationale_predictions(truth: List[Rationale], pred: List[Rationale]) -> Dict[str, Dict[str, float]]:
"""Computes instance (annotation)-level micro/macro averaged F1s"""
scores = dict()
truth = set(truth)
pred = set(pred)
micro_prec = len(truth & pred) / len(pred)
micro_rec = len(truth & pred) / len(truth)
micro_f1 = _f1(micro_prec, micro_rec)
scores['instance_micro'] = {
'p': micro_prec,
'r': micro_rec,
'f1': micro_f1,
}
ann_to_rat = _keyed_rationale_from_list(truth)
pred_to_rat = _keyed_rationale_from_list(pred)
instances_to_scores = dict()
for k in set(ann_to_rat.keys()) | (pred_to_rat.keys()):
if len(pred_to_rat.get(k, set())) > 0:
instance_prec = len(ann_to_rat.get(k, set()) & pred_to_rat.get(k, set())) / len(pred_to_rat[k])
else:
instance_prec = 0
if len(ann_to_rat.get(k, set())) > 0:
instance_rec = len(ann_to_rat.get(k, set()) & pred_to_rat.get(k, set())) / len(ann_to_rat[k])
else:
instance_rec = 0
instance_f1 = _f1(instance_prec, instance_rec)
instances_to_scores[k] = {
'p': instance_prec,
'r': instance_rec,
'f1': instance_f1,
}
# these are calculated as sklearn would
macro_prec = sum(instance['p'] for instance in instances_to_scores.values()) / len(instances_to_scores)
macro_rec = sum(instance['r'] for instance in instances_to_scores.values()) / len(instances_to_scores)
macro_f1 = sum(instance['f1'] for instance in instances_to_scores.values()) / len(instances_to_scores)
scores['instance_macro'] = {
'p': macro_prec,
'r': macro_rec,
'f1': macro_f1,
}
return scores
def _auprc(truth: Dict[Any, List[bool]], preds: Dict[Any, List[float]]) -> float:
if len(preds) == 0:
return 0.0
assert len(truth.keys() and preds.keys()) == len(truth.keys())
aucs = []
for k, true in truth.items():
pred = preds[k]
true = [int(t) for t in true]
precision, recall, _ = precision_recall_curve(true, pred)
aucs.append(auc(recall, precision))
return np.average(aucs)
def _score_aggregator(truth: Dict[Any, List[bool]], preds: Dict[Any, List[float]], score_function: Callable[[List[float], List[float]], float ], discard_single_class_answers: bool) -> float:
if len(preds) == 0:
return 0.0
assert len(truth.keys() and preds.keys()) == len(truth.keys())
scores = []
for k, true in truth.items():
pred = preds[k]
if (all(true) or all(not x for x in true)) and discard_single_class_answers:
continue
true = [int(t) for t in true]
scores.append(score_function(true, pred))
return np.average(scores)
def score_soft_tokens(paired_scores: List[PositionScoredDocument]) -> Dict[str, float]:
truth = {(ps.ann_id, ps.docid): ps.truths for ps in paired_scores}
pred = {(ps.ann_id, ps.docid): ps.scores for ps in paired_scores}
auprc_score = _auprc(truth, pred)
ap = _score_aggregator(truth, pred, average_precision_score, True)
roc_auc = _score_aggregator(truth, pred, roc_auc_score, True)
return {
'auprc': auprc_score,
'average_precision': ap,
'roc_auc_score': roc_auc,
}
def _instances_aopc(instances: List[dict], thresholds: List[float], key: str) -> Tuple[float, List[float]]:
dataset_scores = []
for inst in instances:
kls = inst['classification']
beta_0 = inst['classification_scores'][kls]
instance_scores = []
for score in filter(lambda x : x['threshold'] in thresholds, sorted(inst['thresholded_scores'], key=lambda x: x['threshold'])):
beta_k = score[key][kls]
delta = beta_0 - beta_k
instance_scores.append(delta)
assert len(instance_scores) == len(thresholds)
dataset_scores.append(instance_scores)
dataset_scores = np.array(dataset_scores)
# a careful reading of Samek, et al. "Evaluating the Visualization of What a Deep Neural Network Has Learned"
# and some algebra will show the reader that we can average in any of several ways and get the same result:
# over a flattened array, within an instance and then between instances, or over instances (by position) an
# then across them.
final_score = np.average(dataset_scores)
position_scores = np.average(dataset_scores, axis=0).tolist()
return final_score, position_scores
def compute_aopc_scores(instances: List[dict], aopc_thresholds: List[float]):
if aopc_thresholds is None :
aopc_thresholds = sorted(set(chain.from_iterable([x['threshold'] for x in y['thresholded_scores']] for y in instances)))
aopc_comprehensiveness_score, aopc_comprehensiveness_points = _instances_aopc(instances, aopc_thresholds, 'comprehensiveness_classification_scores')
aopc_sufficiency_score, aopc_sufficiency_points = _instances_aopc(instances, aopc_thresholds, 'sufficiency_classification_scores')
return aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points
def score_classifications(instances: List[dict], annotations: List[Annotation], docs: Dict[str, List[str]], aopc_thresholds: List[float]) -> Dict[str, float]:
def compute_kl(cls_scores_, faith_scores_):
keys = list(cls_scores_.keys())
cls_scores_ = [cls_scores_[k] for k in keys]
faith_scores_ = [faith_scores_[k] for k in keys]
return entropy(faith_scores_, cls_scores_)
labels = list(set(x.classification for x in annotations))
label_to_int = {l:i for i,l in enumerate(labels)}
key_to_instances = {inst['annotation_id']:inst for inst in instances}
truth = []
predicted = []
for ann in annotations:
truth.append(label_to_int[ann.classification])
inst = key_to_instances[ann.annotation_id]
predicted.append(label_to_int[inst['classification']])
classification_scores = classification_report(truth, predicted, output_dict=True, target_names=labels, digits=3)
accuracy = accuracy_score(truth, predicted)
if 'comprehensiveness_classification_scores' in instances[0]:
comprehensiveness_scores = [x['classification_scores'][x['classification']] - x['comprehensiveness_classification_scores'][x['classification']] for x in instances]
comprehensiveness_score = np.average(comprehensiveness_scores)
else :
comprehensiveness_score = None
comprehensiveness_scores = None
if 'sufficiency_classification_scores' in instances[0]:
sufficiency_scores = [x['classification_scores'][x['classification']] - x['sufficiency_classification_scores'][x['classification']] for x in instances]
sufficiency_score = np.average(sufficiency_scores)
else :
sufficiency_score = None
sufficiency_scores = None
if 'comprehensiveness_classification_scores' in instances[0]:
comprehensiveness_entropies = [entropy(list(x['classification_scores'].values())) - entropy(list(x['comprehensiveness_classification_scores'].values())) for x in instances]
comprehensiveness_entropy = np.average(comprehensiveness_entropies)
comprehensiveness_kl = np.average(list(compute_kl(x['classification_scores'], x['comprehensiveness_classification_scores']) for x in instances))
else:
comprehensiveness_entropies = None
comprehensiveness_kl = None
comprehensiveness_entropy = None
if 'sufficiency_classification_scores' in instances[0]:
sufficiency_entropies = [entropy(list(x['classification_scores'].values())) - entropy(list(x['sufficiency_classification_scores'].values())) for x in instances]
sufficiency_entropy = np.average(sufficiency_entropies)
sufficiency_kl = np.average(list(compute_kl(x['classification_scores'], x['sufficiency_classification_scores']) for x in instances))
else:
sufficiency_entropies = None
sufficiency_kl = None
sufficiency_entropy = None
if 'thresholded_scores' in instances[0]:
aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points = compute_aopc_scores(instances, aopc_thresholds)
else:
aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points = None, None, None, None, None
if 'tokens_to_flip' in instances[0]:
token_percentages = []
for ann in annotations:
# in practice, this is of size 1 for everything except e-snli
docids = set(ev.docid for ev in chain.from_iterable(ann.evidences))
inst = key_to_instances[ann.annotation_id]
tokens = inst['tokens_to_flip']
doc_lengths = sum(len(docs[d]) for d in docids)
token_percentages.append(tokens / doc_lengths)
token_percentages = np.average(token_percentages)
else:
token_percentages = None
return {
'accuracy': accuracy,
'prf': classification_scores,
'comprehensiveness': comprehensiveness_score,
'sufficiency': sufficiency_score,
'comprehensiveness_entropy': comprehensiveness_entropy,
'comprehensiveness_kl': comprehensiveness_kl,
'sufficiency_entropy': sufficiency_entropy,
'sufficiency_kl': sufficiency_kl,
'aopc_thresholds': aopc_thresholds,
'comprehensiveness_aopc': aopc_comprehensiveness_score,
'comprehensiveness_aopc_points': aopc_comprehensiveness_points,
'sufficiency_aopc': aopc_sufficiency_score,
'sufficiency_aopc_points': aopc_sufficiency_points,
}
def verify_instance(instance: dict, docs: Dict[str, list], thresholds: Set[float]):
error = False
docids = []
# verify the internal structure of these instances is correct:
# * hard predictions are present
# * start and end tokens are valid
# * soft rationale predictions, if present, must have the same document length
for rat in instance['rationales']:
docid = rat['docid']
if docid not in docid:
error = True
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} could not be found as a preprocessed document! Gave up on additional processing.')
continue
doc_length = len(docs[docid])
for h1 in rat.get('hard_rationale_predictions', []):
# verify that each token is valid
# verify that no annotations overlap
for h2 in rat.get('hard_rationale_predictions', []):
if h1 == h2:
continue
if len(set(range(h1['start_token'], h1['end_token'])) & set(range(h2['start_token'], h2['end_token']))) > 0:
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} {h1} and {h2} overlap!')
error = True
if h1['start_token'] > doc_length:
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} received an impossible tokenspan: {h1} for a document of length {doc_length}')
error = True
if h1['end_token'] > doc_length:
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} received an impossible tokenspan: {h1} for a document of length {doc_length}')
error = True
# length check for soft rationale
# note that either flattened_documents or sentence-broken documents must be passed in depending on result
soft_rationale_predictions = rat.get('soft_rationale_predictions', [])
if len(soft_rationale_predictions) > 0 and len(soft_rationale_predictions) != doc_length:
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} expected classifications for {doc_length} tokens but have them for {len(soft_rationale_predictions)} tokens instead!')
error = True
# count that one appears per-document
docids = Counter(docids)
for docid, count in docids.items():
if count > 1:
error = True
logging.info('Error! For instance annotation={instance["annotation_id"]}, docid={docid} appear {count} times, may only appear once!')
classification = instance.get('classification', '')
if not isinstance(classification, str):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, classification field {classification} is not a string!')
error = True
classification_scores = instance.get('classification_scores', dict())
if not isinstance(classification_scores, dict):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, classification_scores field {classification_scores} is not a dict!')
error = True
comprehensiveness_classification_scores = instance.get('comprehensiveness_classification_scores', dict())
if not isinstance(comprehensiveness_classification_scores, dict):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, comprehensiveness_classification_scores field {comprehensiveness_classification_scores} is not a dict!')
error = True
sufficiency_classification_scores = instance.get('sufficiency_classification_scores', dict())
if not isinstance(sufficiency_classification_scores, dict):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, sufficiency_classification_scores field {sufficiency_classification_scores} is not a dict!')
error = True
if ('classification' in instance) != ('classification_scores' in instance):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a classification, you must also provide classification scores!')
error = True
if ('comprehensiveness_classification_scores' in instance) and not ('classification' in instance):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a classification, you must also provide a comprehensiveness_classification_score')
error = True
if ('sufficiency_classification_scores' in instance) and not ('classification_scores' in instance):
logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a sufficiency_classification_score, you must also provide a classification score!')
error = True
if 'thresholded_scores' in instance:
instance_thresholds = set(x['threshold'] for x in instance['thresholded_scores'])
if instance_thresholds != thresholds:
error = True
logging.info('Error: {instance["thresholded_scores"]} has thresholds that differ from previous thresholds: {thresholds}')
if 'comprehensiveness_classification_scores' not in instance\
or 'sufficiency_classification_scores' not in instance\
or 'classification' not in instance\
or 'classification_scores' not in instance:
error = True
logging.info('Error: {instance} must have comprehensiveness_classification_scores, sufficiency_classification_scores, classification, and classification_scores defined when including thresholded scores')
if not all('sufficiency_classification_scores' in x for x in instance['thresholded_scores']):
error = True
logging.info('Error: {instance} must have sufficiency_classification_scores for every threshold')
if not all('comprehensiveness_classification_scores' in x for x in instance['thresholded_scores']):
error = True
logging.info('Error: {instance} must have comprehensiveness_classification_scores for every threshold')
return error
def verify_instances(instances: List[dict], docs: Dict[str, list]):
annotation_ids = list(x['annotation_id'] for x in instances)
key_counter = Counter(annotation_ids)
multi_occurrence_annotation_ids = list(filter(lambda kv: kv[1] > 1, key_counter.items()))
error = False
if len(multi_occurrence_annotation_ids) > 0:
error = True
logging.info(f'Error in instances: {len(multi_occurrence_annotation_ids)} appear multiple times in the annotations file: {multi_occurrence_annotation_ids}')
failed_validation = set()
instances_with_classification = list()
instances_with_soft_rationale_predictions = list()
instances_with_soft_sentence_predictions = list()
instances_with_comprehensiveness_classifications = list()
instances_with_sufficiency_classifications = list()
instances_with_thresholded_scores = list()
if 'thresholded_scores' in instances[0]:
thresholds = set(x['threshold'] for x in instances[0]['thresholded_scores'])
else:
thresholds = None
for instance in instances:
instance_error = verify_instance(instance, docs, thresholds)
if instance_error:
error = True
failed_validation.add(instance['annotation_id'])
if instance.get('classification', None) != None:
instances_with_classification.append(instance)
if instance.get('comprehensiveness_classification_scores', None) != None:
instances_with_comprehensiveness_classifications.append(instance)
if instance.get('sufficiency_classification_scores', None) != None:
instances_with_sufficiency_classifications.append(instance)
has_soft_rationales = []
has_soft_sentences = []
for rat in instance['rationales']:
if rat.get('soft_rationale_predictions', None) != None:
has_soft_rationales.append(rat)
if rat.get('soft_sentence_predictions', None) != None:
has_soft_sentences.append(rat)
if len(has_soft_rationales) > 0:
instances_with_soft_rationale_predictions.append(instance)
if len(has_soft_rationales) != len(instance['rationales']):
error = True
logging.info(f'Error: instance {instance["annotation"]} has soft rationales for some but not all reported documents!')
if len(has_soft_sentences) > 0:
instances_with_soft_sentence_predictions.append(instance)
if len(has_soft_sentences) != len(instance['rationales']):
error = True
logging.info(f'Error: instance {instance["annotation"]} has soft sentences for some but not all reported documents!')
if 'thresholded_scores' in instance:
instances_with_thresholded_scores.append(instance)
logging.info(f'Error in instances: {len(failed_validation)} instances fail validation: {failed_validation}')
if len(instances_with_classification) != 0 and len(instances_with_classification) != len(instances):
logging.info(f'Either all {len(instances)} must have a classification or none may, instead {len(instances_with_classification)} do!')
error = True
if len(instances_with_soft_sentence_predictions) != 0 and len(instances_with_soft_sentence_predictions) != len(instances):
logging.info(f'Either all {len(instances)} must have a sentence prediction or none may, instead {len(instances_with_soft_sentence_predictions)} do!')
error = True
if len(instances_with_soft_rationale_predictions) != 0 and len(instances_with_soft_rationale_predictions) != len(instances):
logging.info(f'Either all {len(instances)} must have a soft rationale prediction or none may, instead {len(instances_with_soft_rationale_predictions)} do!')
error = True
if len(instances_with_comprehensiveness_classifications) != 0 and len(instances_with_comprehensiveness_classifications) != len(instances):
error = True
logging.info(f'Either all {len(instances)} must have a comprehensiveness classification or none may, instead {len(instances_with_comprehensiveness_classifications)} do!')
if len(instances_with_sufficiency_classifications) != 0 and len(instances_with_sufficiency_classifications) != len(instances):
error = True
logging.info(f'Either all {len(instances)} must have a sufficiency classification or none may, instead {len(instances_with_sufficiency_classifications)} do!')
if len(instances_with_thresholded_scores) != 0 and len(instances_with_thresholded_scores) != len(instances):
error = True
logging.info(f'Either all {len(instances)} must have thresholded scores or none may, instead {len(instances_with_thresholded_scores)} do!')
if error:
raise ValueError('Some instances are invalid, please fix your formatting and try again')
def _has_hard_predictions(results: List[dict]) -> bool:
# assumes that we have run "verification" over the inputs
return 'rationales' in results[0]\
and len(results[0]['rationales']) > 0\
and 'hard_rationale_predictions' in results[0]['rationales'][0]\
and results[0]['rationales'][0]['hard_rationale_predictions'] is not None\
and len(results[0]['rationales'][0]['hard_rationale_predictions']) > 0
def _has_soft_predictions(results: List[dict]) -> bool:
# assumes that we have run "verification" over the inputs
return 'rationales' in results[0] and len(results[0]['rationales']) > 0 and 'soft_rationale_predictions' in results[0]['rationales'][0] and results[0]['rationales'][0]['soft_rationale_predictions'] is not None
def _has_soft_sentence_predictions(results: List[dict]) -> bool:
# assumes that we have run "verification" over the inputs
return 'rationales' in results[0] and len(results[0]['rationales']) > 0 and 'soft_sentence_predictions' in results[0]['rationales'][0] and results[0]['rationales'][0]['soft_sentence_predictions'] is not None
def _has_classifications(results: List[dict]) -> bool:
# assumes that we have run "verification" over the inputs
return 'classification' in results[0] and results[0]['classification'] is not None
def main():
parser = argparse.ArgumentParser(description="""Computes rationale and final class classification scores""", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--data_dir', dest='data_dir', required=True, help='Which directory contains a {train,val,test}.jsonl file?')
parser.add_argument('--split', dest='split', required=True, help='Which of {train,val,test} are we scoring on?')
parser.add_argument('--strict', dest='strict', required=False, action='store_true', default=False, help='Do we perform strict scoring?')
parser.add_argument('--results', dest='results', required=True, help="""Results File
Contents are expected to be jsonl of:
{
"annotation_id": str, required
# these classifications *must not* overlap
"rationales": List[
{
"docid": str, required
"hard_rationale_predictions": List[{
"start_token": int, inclusive, required
"end_token": int, exclusive, required
}], optional,
# token level classifications, a value must be provided per-token
# in an ideal world, these correspond to the hard-decoding above.
"soft_rationale_predictions": List[float], optional.
# sentence level classifications, a value must be provided for every
# sentence in each document, or not at all
"soft_sentence_predictions": List[float], optional.
}
],
# the classification the model made for the overall classification task
"classification": str, optional
# A probability distribution output by the model. We require this to be normalized.
"classification_scores": Dict[str, float], optional
# The next two fields are measures for how faithful your model is (the
# rationales it predicts are in some sense causal of the prediction), and
# how sufficient they are. We approximate a measure for comprehensiveness by
# asking that you remove the top k%% of tokens from your documents,
# running your models again, and reporting the score distribution in the
# "comprehensiveness_classification_scores" field.
# We approximate a measure of sufficiency by asking exactly the converse
# - that you provide model distributions on the removed k%% tokens.
# 'k' is determined by human rationales, and is documented in our paper.
# You should determine which of these tokens to remove based on some kind
# of information about your model: gradient based, attention based, other
# interpretability measures, etc.
# scores per class having removed k%% of the data, where k is determined by human comprehensive rationales
"comprehensiveness_classification_scores": Dict[str, float], optional
# scores per class having access to only k%% of the data, where k is determined by human comprehensive rationales
"sufficiency_classification_scores": Dict[str, float], optional
# the number of tokens required to flip the prediction - see "Is Attention Interpretable" by Serrano and Smith.
"tokens_to_flip": int, optional
"thresholded_scores": List[{
"threshold": float, required,
"comprehensiveness_classification_scores": like "classification_scores"
"sufficiency_classification_scores": like "classification_scores"
}], optional. if present, then "classification" and "classification_scores" must be present
}
When providing one of the optional fields, it must be provided for *every* instance.
The classification, classification_score, and comprehensiveness_classification_scores
must together be present for every instance or absent for every instance.
""")
parser.add_argument('--iou_thresholds', dest='iou_thresholds', required=False, nargs='+', type=float, default=[0.5], help='''Thresholds for IOU scoring.
These are used for "soft" or partial match scoring of rationale spans.
A span is considered a match if the size of the intersection of the prediction
and the annotation, divided by the union of the two spans, is larger than
the IOU threshold. This score can be computed for arbitrary thresholds.
''')
parser.add_argument('--score_file', dest='score_file', required=False, default=None, help='Where to write results?')
parser.add_argument('--aopc_thresholds', nargs='+', required=False, type=float, default=[0.01, 0.05, 0.1, 0.2, 0.5], help='Thresholds for AOPC Thresholds')
args = parser.parse_args()
results = load_jsonl(args.results)
docids = set(chain.from_iterable([rat['docid'] for rat in res['rationales']] for res in results))
docs = load_flattened_documents(args.data_dir, docids)
verify_instances(results, docs)
# load truth
annotations = annotations_from_jsonl(os.path.join(args.data_dir, args.split + '.jsonl'))
docids |= set(chain.from_iterable((ev.docid for ev in chain.from_iterable(ann.evidences)) for ann in annotations))
has_final_predictions = _has_classifications(results)
scores = dict()
if args.strict:
if not args.iou_thresholds:
raise ValueError("--iou_thresholds must be provided when running strict scoring")
if not has_final_predictions:
raise ValueError("We must have a 'classification', 'classification_score', and 'comprehensiveness_classification_score' field in order to perform scoring!")
# TODO think about offering a sentence level version of these scores.
if _has_hard_predictions(results):
truth = list(chain.from_iterable(Rationale.from_annotation(ann) for ann in annotations))
pred = list(chain.from_iterable(Rationale.from_instance(inst) for inst in results))
if args.iou_thresholds is not None:
iou_scores = partial_match_score(truth, pred, args.iou_thresholds)
scores['iou_scores'] = iou_scores
# NER style scoring
rationale_level_prf = score_hard_rationale_predictions(truth, pred)
scores['rationale_prf'] = rationale_level_prf
token_level_truth = list(chain.from_iterable(rat.to_token_level() for rat in truth))
token_level_pred = list(chain.from_iterable(rat.to_token_level() for rat in pred))
token_level_prf = score_hard_rationale_predictions(token_level_truth, token_level_pred)
scores['token_prf'] = token_level_prf
else:
logging.info("No hard predictions detected, skipping rationale scoring")
if _has_soft_predictions(results):
flattened_documents = load_flattened_documents(args.data_dir, docids)
paired_scoring = PositionScoredDocument.from_results(results, annotations, flattened_documents, use_tokens=True)
token_scores = score_soft_tokens(paired_scoring)
scores['token_soft_metrics'] = token_scores
else:
logging.info("No soft predictions detected, skipping rationale scoring")
if _has_soft_sentence_predictions(results):
documents = load_documents(args.data_dir, docids)
paired_scoring = PositionScoredDocument.from_results(results, annotations, documents, use_tokens=False)
sentence_scores = score_soft_tokens(paired_scoring)
scores['sentence_soft_metrics'] = sentence_scores
else:
logging.info("No sentence level predictions detected, skipping sentence-level diagnostic")
if has_final_predictions:
flattened_documents = load_flattened_documents(args.data_dir, docids)
class_results = score_classifications(results, annotations, flattened_documents, args.aopc_thresholds)
scores['classification_scores'] = class_results
else:
logging.info("No classification scores detected, skipping classification")
pprint.pprint(scores)
if args.score_file:
with open(args.score_file, 'w') as of:
json.dump(scores, of, indent=4, sort_keys=True)
if __name__ == '__main__':
main()