-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtf_train.py
230 lines (178 loc) · 10.3 KB
/
tf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from tf_models.lstm import LSTMModel
from tf_models.conv import ConvModel
from tf_models.convlstm import ConvLSTMModel1, ConvLSTMModel2
from tf_models.bidirectional_lstm import BiLSTMModel
from tf_models.res_lstm import ResLSTM
import tensorflow as tf
import numpy as np
from tqdm import tqdm_notebook, tqdm
import os
import json
import tensorflow.contrib.slim as slim
from ReadData import ReadData
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model', '-m', help='Name of Model to use [lstm, cnn, cnnlstm, bilstm, res_lstm, cnnlstmdeep]', required=True)
parser.add_argument('--training_csv', '-csv', help='Path to Training CSV file', required=True)
parser.add_argument('--classes', '-c', help='Which model to train? ["Gender", "Age_Group", "Profession"]', required=True)
parser.add_argument('--embedding', '-e', help='Path to word embedding model | Default: "embeddings/skipgram-100/skipgram.bin"', default='embeddings/skipgram-100/skipgram.bin')
parser.add_argument('--weights', '-w', help='Path to Pre-trained model to continue training')
parser.add_argument('--n_classes', '-n', help='No of classes to predict | Default: 2', default=2, type=int)
parser.add_argument('--optimizer', '-o', help='which Optimizer to use? | Default: "Adam"', default='adam')
parser.add_argument('--batch_size', '-b', help='What should be the batch size? | Default: 32', default=32, type=int)
parser.add_argument('--epochs', '-ep', help='How many epochs to Train? | Default: 5', default=5, type=int)
parser.add_argument('--initial_epoch', '-iep', help='Where to continue from? | Default: 0', default=0, type=int)
parser.add_argument('--steps', '-st', help='How many steps to Train? | Default: 100000', default=100000, type=int)
parser.add_argument('--train_val_split', '-s', help='What should be the train vs val split fraction? | Default: 0.1', default=0.1, type=float)
parser.add_argument('--no_samples', '-ns', help='How many samples to train on? | Default: 1000', default=1000, type=int)
parser.add_argument('--learning_rate', '-lr', help='What should be the learning rate? | Default: 0.00001', default=0.00001, type=float)
parser.add_argument('--lr_change', '-clr', help='How often should the learning rate be increased? | Default: 10000', default=10000, type=int)
parser.add_argument('--logs', '-l', help="Where should the trained model be saved? | Default: logs", default='logs')
parser.add_argument('--data_overlap', '-ol', help="What percent of data should overlap with each batch? | Default: 0.2", default=0.2, type=float)
parser.add_argument('--use_attention', '-att', help="Whether to use Attetion layer or not? | Default: False", action="store_true")
parser.add_argument('--attention_size', '-ats', help="What should be the size of attention layer? | Default: 64", default=64, type=int)
parser.add_argument('--hidden_states', '-hds', help="How many hidden states on LSTM? | Default: 128", default=128, type=int)
args = parser.parse_args()
classes = args.n_classes
attention_size = args.attention_size
if args.model == 'lstm':
timesteps = 75
embed_size = 101
hidden_states = args.hidden_states
x = tf.placeholder("float", [None, timesteps, embed_size], name='InputData')
y = tf.placeholder("float", [None, classes], name='Label')
model = LSTMModel(hidden_states=hidden_states, no_classes=classes, timesteps=timesteps,
attention_size=attention_size, use_attention=args.use_attention)
elif args.model == 'bilstm':
timesteps = 75
embed_size = 101
hidden_states = args.hidden_states
x = tf.placeholder("float", [None, timesteps, embed_size], name='InputData')
y = tf.placeholder("float", [None, classes], name='Label')
model = BiLSTMModel(hidden_states=hidden_states, no_classes=classes, timesteps=timesteps,
attention_size=attention_size, use_attention=args.use_attention)
if args.model == 'res_lstm':
timesteps = 75
embed_size = 101
hidden_states = args.hidden_states
x = tf.placeholder("float", [None, timesteps, embed_size], name='InputData')
y = tf.placeholder("float", [None, classes], name='Label')
model = ResLSTM(hidden_states=hidden_states, no_classes=classes, timesteps=timesteps,
attention_size=attention_size, use_attention=args.use_attention)
elif args.model.startswith('cnn'):
timesteps = 75
embed_size = 101
hidden_states = args.hidden_states
x = tf.placeholder("float", [None, timesteps, embed_size, 1], name='InputData')
y = tf.placeholder("float", [None, classes], name='Label')
if args.model.endswith('lstm'):
model = ConvLSTMModel1(hidden_states, classes, attention_size=attention_size,
use_attention=args.use_attention)
elif args.model.endswith('deep'):
model = ConvLSTMModel2(hidden_states, classes, attention_size=attention_size,
use_attention=args.use_attention)
else:
model = ConvModel(classes)
reader = ReadData(args.training_csv, args.embedding, args.classes,
batch_size=args.batch_size, no_samples=args.no_samples,
train_val_split=args.train_val_split)
print('Reading Validation data.')
val_x, val_y = reader.read_all_val()
if args.model.startswith('cnn'):
val_x = np.reshape(val_x, (val_x.shape[0], timesteps, embed_size, 1))
with tf.name_scope('Model'):
prediction = model.model(x)
with tf.name_scope('Loss'):
crossent = tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y)
cost_func = (tf.reduce_mean(crossent))/args.batch_size
#cost_func = tf.reduce_mean(crossent)
lr = tf.placeholder('float', [])
learning_rate = args.learning_rate
with tf.name_scope('Optimizer'):
optimizer = tf.train.RMSPropOptimizer(learning_rate=lr).minimize(cost_func)
#optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost_func)
with tf.name_scope('Accuracy'):
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
if args.weights == None:
log_dir = args.logs + '_' + args.model + '_' + args.classes
if not os.path.exists(log_dir):
os.mkdir(log_dir)
weights_path = os.path.join(log_dir, 'weights')
if not os.path.exists(weights_path):
os.mkdir(weights_path)
tensorboard_path = os.path.join(log_dir, 'tensorboard')
if not os.path.exists(tensorboard_path):
os.mkdir(tensorboard_path)
train_log = os.path.join(tensorboard_path, 'training')
val_log = os.path.join(tensorboard_path, 'validation')
else:
log_dir = args.weights
weights_path = os.path.join(log_dir, 'weights')
tensorboard_path = os.path.join(log_dir, 'tensorboard')
train_log = os.path.join(tensorboard_path, 'training')
val_log = os.path.join(tensorboard_path, 'validation')
with open(os.path.join(weights_path, 'model.json'), 'w') as f:
json.dump(args.__dict__, f)
saver = tf.train.Saver()
tf.summary.scalar('loss', cost_func)
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
prev_val_loss = float('inf')
print('Training on {} Training samples and {} Validation samples'.format(reader.train_size, reader.val_size))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
try:
saver.restore(sess, tf.train.latest_checkpoint(weights_path))
print()
print('Model Successfully loaded from {}'.format(weights_path))
print()
except Exception as e:
print(e)
exit()
train_summary_writer = tf.summary.FileWriter(train_log, graph=sess.graph)
val_summary_writer = tf.summary.FileWriter(val_log)
for epoch in range(args.epochs):
i = 0
epoch_loss = 0
no_batches = int(reader.train_size/args.batch_size)
loss = []
acc = []
updation_step = args.lr_change*2
with tqdm(total=no_batches, desc="Epoch {}/{}: loss: {} acc: {}".format(epoch + 1, args.epochs, loss, acc)) as pbar:
for batch_num in range(no_batches):
start = i
end = i + args.batch_size
i = start + int(args.batch_size*(1-args.data_overlap))
step = epoch*no_batches+batch_num
epoch_x, epoch_y = reader.get_next_batch(start, end)
if args.model.startswith('cnn'):
epoch_x = np.reshape(epoch_x, (epoch_x.shape[0], timesteps, embed_size, 1))
_, c, train_summary = sess.run([optimizer, cost_func, merged_summary_op], feed_dict={lr: args.learning_rate, x: epoch_x, y:epoch_y})
train_summary_writer.add_summary(train_summary, step)
val_loss, val_acc, val_summary = sess.run([cost_func, accuracy, merged_summary_op], feed_dict={x: val_x, y:val_y})
val_summary_writer.add_summary(val_summary, step)
if step > updation_step:
updation_step += args.lr_change
if learning_rate < 1.0:
learning_rate = learning_rate*2.5
print('LR: ', learning_rate)
a = accuracy.eval({x: epoch_x, y: epoch_y})
loss.append(c)
acc.append(a)
pbar.set_description(desc=("Epoch {}/{}: loss: {:.03f}".format(epoch + 1, args.epochs, np.average(loss)) + " acc: {:.03f}".format(np.average(acc))))
pbar.update(1)
print('------------------------------------------------------------')
#val_loss, val_acc, val_summary = sess.run([cost_func, accuracy, merged_summary_op], feed_dict={x: val_x, y:val_y})
#val_summary_writer.add_summary(val_summary, epoch)
val_loss = cost_func.eval({x: val_x, y: val_y})
val_acc = accuracy.eval({x: val_x, y: val_y})
print("Val Loss: {} Val Accuracy: {}".format(val_loss, val_acc))
print('------------------------------------------------------------')
if val_loss < prev_val_loss:
prev_val_loss = val_loss
model_name = 'ep{:03d}'.format(args.initial_epoch + epoch+1) + '-loss{:.03f}'.format(np.average(loss)) + '-val_loss{:.03f}.ckpt'.format(val_loss)
saver.save(sess, os.path.join(weights_path, model_name))
print("Accuracy: {}".format(accuracy.eval({x: val_x, y: val_y})))