-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
140 lines (108 loc) · 5.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import time
import random
import torch
import matplotlib.pyplot as plt
from pathlib import Path
from datasets.modelnet10 import PointCloudDataset, default_transforms
from utils.loss import pointnetloss
from models.segmentation import PointNet
def train(model, optimizer, dataloaders, epochs, plot=False):
""" Train the model """
train_losses, train_accuracies = [],[]
valid_losses, valid_accuracies = [],[]
best_acc = 0
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch+1, epochs))
print('-'*70)
train_loss, train_acc = 0,0
val_loss, val_acc = 0,0
for phase in ['train', 'validation']:
if phase == 'train':
print('Training ...')
t_start = time.time()
model.train()
else:
print('Validation ...')
t_start = time.time()
model.eval()
running_loss = 0
total, correct = 0,0
for step, data in enumerate(dataloaders[phase]):
if phase == 'train':
optimizer.zero_grad()
inputs, labels = data['pointcloud'].to(device).float(), data['category'].to(device)
outputs, m3x3, m64x64 = model(inputs.transpose(1,2))
n_points = outputs.size()[1]
loss = pointnetloss(outputs.transpose(1,2), labels.unsqueeze(1).repeat(1,n_points), m3x3, m64x64)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.transpose(1,2).data, 1)
total += labels.size(0) * n_points
correct += (predicted == labels.unsqueeze(1).repeat(1,n_points)).sum().item()
if (step % 20 == 0) & (step != 0):
print("Batch {}/{} - Loss : {}".format(step, len(dataloaders[phase]), running_loss/step))
else:
with torch.no_grad():
inputs, labels = data['pointcloud'].to(device).float(), data['category'].to(device)
outputs, m3x3, m64x64 = model(inputs.transpose(1,2))
n_points = outputs.size()[1]
loss = pointnetloss(outputs.transpose(1,2), labels.unsqueeze(1).repeat(1,n_points), m3x3, m64x64)
running_loss += loss.item()
_, predicted = torch.max(outputs.transpose(1,2).data, 1)
total += labels.size(0) * n_points
correct += (predicted == labels.unsqueeze(1).repeat(1,n_points)).sum().item()
if (step % 20 == 0) & (step != 0):
print('Batch {}/{} -- Loss : {}'.format(step, len(dataloaders[phase]), running_loss/step))
# calculate average loss/accuracy
if phase == 'train':
train_acc = 100. * correct / total
train_loss = running_loss/len(dataloaders[phase])
train_losses.append(train_loss)
train_accuracies.append(train_acc)
print(' Average training loss : {}'.format(train_loss))
print(' Average training accuracy : {} %'.format(train_acc))
t_end = time.time()
print(' Elapsed Time : {}'.format(t_end-t_start))
else:
val_acc = 100. * correct / total
val_loss = running_loss/len(dataloaders[phase])
valid_losses.append(val_loss)
valid_accuracies.append(val_acc)
print(' Average validation loss : {}'.format(val_loss))
print(' Average validation accuracy : {} %'.format(val_acc))
t_end = time.time()
print(' Elapsed Time : {}'.format(t_end-t_start))
# save the model with best accuracy
if best_acc < val_acc:
best_acc = val_acc
torch.save(model.state_dict(), './models/model.pt')
print('model checkpoint saved !')
if plot == True:
plt.subplot(2,1,1)
plt.plot(np.arange(epochs), train_losses, 'r')
plt.plot(np.arange(epochs), valid_losses, 'b')
plt.legend(['Train Loss','Validation Loss'])
plt.show()
plt.subplot(2,1,2)
plt.plot(np.arange(epochs), train_accuracies, 'r')
plt.plot(np.arange(epochs), valid_accuracies, 'b')
plt.legend(['Train Accuracy','Validation Accuracy'])
plt.show()
print("Training Complete")
return model
if __name__ == "__main__":
random.seed = 42
path = Path("../input/modelnet10-princeton-3d-object-dataset/ModelNet10")
# customized datasets/dataloaders
train_dataset = PointCloudDataset(path, folder="train", transform=default_transforms(), data_augmentation=True)
valid_dataset = PointCloudDataset(path, folder="train", transform=default_transforms(), data_augmentation=False)
datasets = {"train" : train_dataset, "validation" : valid_dataset}
dataloaders = {x : torch.utils.data.DataLoader(datasets[x], batch_size=32, shuffle=True) for x in ['train', 'validation']}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# define hyperparameters
pointnet = PointNet().to(device)
optimizer = torch.optim.Adam(pointnet.parameters(), lr=0.001)
# model training
train(pointnet, optimizer, dataloaders, epochs=3, plot=False)