forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.h
60 lines (53 loc) · 2.63 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#pragma once
#include <torch/csrc/distributed/autograd/context/context.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.h>
#include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.h>
namespace torch {
namespace distributed {
namespace autograd {
// This method is used to attach the 'send' autograd function to the autograd
// graph when we use RPC. This method creates a new 'send' autograd function
// and attaches the provided tensors as next_edges to the 'send' function. In
// addition to this, it also registers the send function in the provided
// autograd context. Finally, the RPC message is updated with appropriate
// autograd information for the recipient.
TORCH_API void addSendRpcBackward(
const ContextPtr& autogradContext,
const AutogradMetadata& autogradMetadata,
std::vector<torch::Tensor>& tensors);
// This method is used to attach the 'recv' autograd function to the autograd
// graph when we use RPC. This method creates a new 'recv' autograd function
// and attaches the provided tensors as inputs to the 'recv' function. It
// creates a new autograd context if needed and registers the 'recv' function
// with this context.
//
// Returns a pointer to the autograd context created.
TORCH_API ContextPtr addRecvRpcBackward(
const AutogradMetadata& autogradMetadata,
std::vector<torch::Tensor>& tensors,
rpc::worker_id_t fromWorkerId,
const rpc::DeviceMap& deviceMap);
// This method is a wrapper utility used internally to wrap autograd info
// and attach autograd function for each type of rpc call if it has valid
// context and tensors require grads or forceGradRecording is true, in this
// case, return RpcWithAutograd message; otherwise return original rpc message.
// NB: forceGradRecording is useful when the request does not contain any tensor
// but the corresponding response does.
TORCH_API c10::intrusive_ptr<rpc::Message> getMessageWithAutograd(
const rpc::worker_id_t dstId,
c10::intrusive_ptr<rpc::Message> wrappedRpcMsg,
rpc::MessageType msgType,
bool forceGradRecording = false,
const rpc::DeviceMap& deviceMap = {});
// Send message after autograd checking
TORCH_API c10::intrusive_ptr<c10::ivalue::Future> sendMessageWithAutograd(
rpc::RpcAgent& agent,
const rpc::WorkerInfo& dst,
c10::intrusive_ptr<rpc::Message> wrappedRpcMsg,
bool forceGradRecording = false,
const float rpcTimeoutSeconds = torch::distributed::rpc::kUnsetRpcTimeout,
bool forceDisableProfiling = false);
} // namespace autograd
} // namespace distributed
} // namespace torch