forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.cpp
185 lines (162 loc) · 6.71 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <ATen/ThreadLocalState.h>
#include <c10/util/ThreadLocalDebugInfo.h>
#include <torch/csrc/autograd/functions/utils.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/distributed/autograd/context/container.h>
#include <torch/csrc/distributed/autograd/functions/recvrpc_backward.h>
#include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h>
#include <torch/csrc/distributed/autograd/utils.h>
#include <torch/csrc/distributed/rpc/profiler/remote_profiler_manager.h>
#include <torch/csrc/distributed/rpc/rpc_agent.h>
#include <torch/csrc/distributed/rpc/types.h>
namespace torch {
namespace distributed {
namespace autograd {
using torch::distributed::autograd::AutogradMetadata;
using torch::distributed::autograd::RpcWithAutograd;
using torch::distributed::rpc::JitFuture;
using torch::distributed::rpc::Message;
using torch::distributed::rpc::MessageType;
using torch::distributed::rpc::RpcAgent;
using torch::distributed::rpc::WorkerInfo;
void addSendRpcBackward(
const ContextPtr& autogradContext,
const AutogradMetadata& autogradMetadata,
std::vector<torch::Tensor>& tensors) {
// Attach autograd information only for tensors requiring grad.
std::vector<torch::Tensor> tensors_with_grad;
std::copy_if(
tensors.begin(),
tensors.end(),
std::back_inserter(tensors_with_grad),
[](const torch::Tensor& t) { return t.requires_grad(); });
// Attach the appropriate autograd edges.
auto grad_fn = std::make_shared<SendRpcBackward>();
grad_fn->set_next_edges(
torch::autograd::collect_next_edges(tensors_with_grad));
// Add the appropriate input metadata for the grad_fn.
for (const auto& tensor : tensors_with_grad) {
grad_fn->add_input_metadata(tensor);
}
// Record the send autograd function in our current context.
autogradContext->addSendFunction(grad_fn, autogradMetadata.autogradMessageId);
}
ContextPtr addRecvRpcBackward(
const AutogradMetadata& autogradMetadata,
std::vector<torch::Tensor>& tensors,
rpc::worker_id_t fromWorkerId,
const rpc::DeviceMap& deviceMap) {
// Initialize autograd context if necessary.
auto& autogradContainer = DistAutogradContainer::getInstance();
auto autogradContext =
autogradContainer.getOrCreateContext(autogradMetadata.autogradContextId);
if (!tensors.empty() && torch::autograd::compute_requires_grad(tensors)) {
// Attach the tensors as inputs to the autograd function.
auto grad_fn = std::make_shared<RecvRpcBackward>(
autogradMetadata, autogradContext, fromWorkerId, deviceMap);
for (auto& tensor : tensors) {
if (tensor.requires_grad()) {
torch::autograd::set_history(tensor, grad_fn);
}
}
// Now update the autograd context with the necessary information.
autogradContext->addRecvFunction(
grad_fn, autogradMetadata.autogradMessageId);
}
return autogradContext;
}
static c10::intrusive_ptr<Message> getMessageWithProfiling(
c10::intrusive_ptr<torch::distributed::rpc::Message> wrappedRpcMessage,
MessageType msgType,
torch::autograd::profiler::ProfilerConfig&& profilerConfig) {
auto& remoteProfilerManager =
torch::distributed::rpc::RemoteProfilerManager::getInstance();
auto key = remoteProfilerManager.getCurrentProfilingKey();
// generate a globally unique Id
auto globallyUniqueProfilingId = remoteProfilerManager.getNextProfilerId();
// Save a mapping of ID -> RPC profiling key and unset the current TLS key.
remoteProfilerManager.saveRPCKey(globallyUniqueProfilingId, key);
remoteProfilerManager.unsetCurrentKey();
auto wrappedProfilingMsg = RpcWithProfilingReq(
msgType,
std::move(wrappedRpcMessage),
std::move(profilerConfig),
globallyUniqueProfilingId);
return std::move(wrappedProfilingMsg).toMessage();
}
c10::intrusive_ptr<Message> getMessageWithAutograd(
const rpc::worker_id_t dstId,
c10::intrusive_ptr<torch::distributed::rpc::Message> wrappedRpcMsg,
MessageType msgType,
bool forceGradRecording,
const rpc::DeviceMap& deviceMap) {
auto& autogradContainer = DistAutogradContainer::getInstance();
// If there is no valid context and no tensor requires grads, send original
// rpc message. otherwise, attach grad info and grad functions and send
// rpcWithAutograd message.
auto tensorsRequireGrad =
torch::autograd::compute_requires_grad(wrappedRpcMsg->tensors());
if (!autogradContainer.hasValidContext() ||
(!forceGradRecording && !tensorsRequireGrad)) {
return wrappedRpcMsg;
}
// Retrieve the appropriate context to modify.
auto autogradContext = autogradContainer.currentContext();
// Wrap the original rpc with autograd information.
AutogradMetadata autogradMetadata(
autogradContext->contextId(), autogradContainer.newAutogradMessageId());
auto rpcWithAutograd = std::make_unique<RpcWithAutograd>(
RpcAgent::getCurrentRpcAgent()->getWorkerInfo().id_,
msgType,
autogradMetadata,
std::move(wrappedRpcMsg),
deviceMap);
if (tensorsRequireGrad) {
// Record autograd information for 'send'.
addSendRpcBackward(
autogradContext, autogradMetadata, rpcWithAutograd->tensors());
}
// Record the workerID
autogradContext->addKnownWorkerId(dstId);
return std::move(*rpcWithAutograd).toMessage();
}
c10::intrusive_ptr<JitFuture> sendMessageWithAutograd(
RpcAgent& agent,
const WorkerInfo& dst,
c10::intrusive_ptr<torch::distributed::rpc::Message> wrappedRpcMsg,
bool forceGradRecording,
const float rpcTimeoutSeconds,
bool forceDisableProfiling) {
auto msg = getMessageWithAutograd(
dst.id_,
std::move(wrappedRpcMsg),
MessageType::FORWARD_AUTOGRAD_REQ,
forceGradRecording,
agent.getDeviceMap(dst));
// If profiler is enabled, wrap this message with profiling metadata that will
// tell the remote end to process this request with the profiler enabled.
if (!forceDisableProfiling) {
switch (torch::profiler::impl::profilerType()) {
case torch::profiler::impl::ActiveProfilerType::LEGACY: {
auto profilerConfig = torch::autograd::profiler::getProfilerConfig();
auto msgWithProfiling = getMessageWithProfiling(
std::move(msg),
rpc::MessageType::RUN_WITH_PROFILING_REQ,
std::move(profilerConfig));
return agent.send(dst, std::move(msgWithProfiling), rpcTimeoutSeconds);
}
case torch::profiler::impl::ActiveProfilerType::KINETO:
TORCH_WARN_ONCE(
"Profiling a distributed call with the Kineto profiler will profile "
"the caller, but not the worker.");
break;
default:
break;
}
}
return agent.send(dst, std::move(msg), rpcTimeoutSeconds);
;
}
} // namespace autograd
} // namespace distributed
} // namespace torch