Skip to content

Latest commit

 

History

History
94 lines (69 loc) · 2.33 KB

File metadata and controls

94 lines (69 loc) · 2.33 KB

Streaming-AI-Chatbot-with-Flask-and-React

A sandbox chatbot application that delivers treaming AI responses, similar to the ChatGPT interface. Built with a python Flask backend and a React Vite frontend.

Features

  • Streaming Responses: Real-time AI responses delivered progressively to enhance user experience.
  • React Frontend: Leveraging React Vite to built a simple chatbot interface.
  • Python Flask Backend: Leveraging Flask to handle API requests and responses.
  • ChatGPT Model: Using the ChatGPT model to generate responses in real-time.

Demo

App Demo

Project Structure

Streaming-AI-Chatbot-with-Flask-and-React
|
├── frontend/
│   ├── public
│   ├── src/
|   |   ├── pages/
|   |   |   ├── chatbot.jsx
│   ├── vite.config.ts
│   └── package.json
|
├── backend/
│   ├── server.py
│   ├── requirements.txt
|
├── .gitignore
├── README.md
└── LICENSE

Installation and Setup

Prerequisites

  • Python 3.9+
  • Node.js

Steps to Run

Clone the repository

git clone https://github.com/janegutou/Streaming-AI-Chatbot-with-Flask-and-React.git
cd Streaming-AI-Chatbot-with-Flask-and-React

Backend Setup

cd backend
python -m venv venv
source venv/bin/activate  # on Windows, venv\Scripts\activate
pip install -r requirements.txt
python server.py  # run the backend server

Frontend Setup

cd frontend
npm install
npm run dev  # run the frontend server

Environment Variables

To run the backend server, you need to create a .env file in the backend directory and add the following variables:

OPENAI_API_KEY=<your_openai_api_key>

Usage

Open your browser and go to http://localhost:5173 to access the chatbot interface.

How Streaming Works

Frontend:

  • Sends a request to backend api endpoint (api/stream) using EventSource.
  • Manages the streaming response incrementally and displays it in webpage with real-time markdown formatting.
  • check more details in frontend/src/pages/chatbot.jsx

Backend:

  • Generate a stream of responses using langchain.
  • Reformat the stream to adapt to text/event-stream MIME type.
  • check more details in backend/server.py