-
Notifications
You must be signed in to change notification settings - Fork 10
/
sc_tfactivity.m
238 lines (199 loc) · 7.75 KB
/
sc_tfactivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
function [cs, tflist, gcommon, numtargetgenes] = sc_tfactivity(X, g, Ttfgn, speciestag, methodid)
% The activity level of a transcription factor (TF) in a given cell is the
% extent to which it is exerting its regulatory potential on its target
% genes.
% https://academic.oup.com/bioinformatics/article/37/9/1234/5949002
%
% [cs,tflist]=sc_tfactivity(X,g);
% CS - is an m-by-n matrix of activity scores for m TFs and n cells.
% TFlist - list of TF genes
if nargin < 2, error('USAGE: [cs,tflist]=sc_tfactivity(X,g);'); end
if nargin < 5 || isempty(methodid), methodid = 4; end
if nargin < 4 || isempty(speciestag), speciestag = 'hs'; end
if nargin < 3 || isempty(Ttfgn) % tf-by-gene matrix T from database
%folder=fileparts(mfilename('fullpath'));
%wrkpth=fullfile(folder,'resources',filesep,'DoRothEA_TF_Target_DB',filesep);
pw1 = fileparts(mfilename('fullpath'));
switch lower(speciestag)
case {'hs', 'human'}
%fname=[wrkpth 'dorothea_hs.mat'];
fname = fullfile(pw1, 'resources', 'DoRothEA_TF_Target_DB', 'dorothea_hs.mat');
case {'mm', 'mouse'}
%fname=[wrkpth 'dorothea_mm.mat'];
fname = fullfile(pw1, 'resources', 'DoRothEA_TF_Target_DB', 'dorothea_mm.mat');
otherwise
error('TF database is not available for the species.');
end
fprintf('\nReading ... %s.\n', fname);
load(fname, 'T');
Ttfgn = T(T.mor > 0, :);
fprintf('Only positive regulatory relationships are used.\n');
end
try
if issparse(X), X = full(X); end
catch
warning('Keep using sparse X.');
end
if methodid ~= 1 % method 1 UCell is rank-based, normalization is unnecessary
[X] = sc_norm(X);
[X] = log1p(X);
end
[gid, gnlist] = grp2idx(Ttfgn.target);
[tid, tflist] = grp2idx(Ttfgn.tf);
t = zeros(max(tid), max(gid));
t(sub2ind([max(tid), max(gid)], tid, gid)) = Ttfgn.mor;
fprintf('Using the Dorothea dadtabase that contains %d TFs and %d targets.\n', ...
size(t, 1), size(t, 2));
% size(t)
% assignin('base','t2',t);
%t2=zeros(max(tid),max(gid));
%for k=1:length(gid)
% t2(tid(k),gid(k))=T.mor(k);
%end
%isequal(t,t2)
% T=T(T.mor>0,:); % only consider positive regulation
%[t]=crosstab(T.tf,T.target); % TF-by-target regulagory relationship
%matrix if only positive regulation
[~, k, l] = intersect(upper(g), upper(gnlist));
t = t(:, l); % tf-by-gene matrix
X = X(k, :); % gene-by-cell matrix
fprintf('Using %d target genes that are present in the data.\n', size(t, 2));
if nargout > 2, gcommon = g(k); end
switch methodid
case 1 % UCell method see also: sc_cellscore_ucell
cs = zeros(size(t, 1), size(X, 2));
R = tiedrank(-X);
R(R > 1500) = 1500 + 1;
numtargetgenes = zeros(size(t, 1), 1);
for k = 1:size(t, 1)
idx1 = t(k, :) > 0;
n1 = sum(idx1);
if n1 > 0
u = sum(R(idx1, :)) - (n1 * (n1 - 1)) / 2;
cs(k, :) = 1 - u / (n1 * 1500);
numtargetgenes(k) = n1;
end
end
cs(cs < 0) = 0;
case 2 % matrix multiplication method
cs = t * X;
numtargetgenes = sum(t > 0, 2);
case 3 % matrix inverse method
cs = pinv(t') * X;
numtargetgenes = sum(t > 0, 2);
case 4 % nnmf method
% ref: Bioinformatics, Volume 37, Issue 9, 1 May 2021, Pages 1234–1245,
% https://doi.org/10.1093/bioinformatics/btaa947
n = size(t, 1);
v.WRfixed = n;
v.W = t.';
[~, cs] = NMF(X, n, 100, 0, v);
numtargetgenes = sum(t > 0, 2);
end
end
function [W, H, bDsave] = NMF(V, R, Niter, beta, initialV)
% [W,H, bDsave] = NMF(V,R,Niter,beta,initialV)
% NMF with beta divergence cost function.
%Input :
% - V : power spectrogram to factorize (a MxN matrix)
% - R : number of templates
% - Niter : number of iterations
% - beta (optional): beta used for beta-divergence (default : beta = 0, IS divergence)
% - initialV (optional) : initial values of W, H (a struct with
% fields W and H)
%Output :
% - W : frequency templates (MxR array)
% - H : temporal activation
% - bDsave : evolution of beta divergence
%
% Copyright (C) 2010 Romain Hennequin
% https://github.com/romi1502/NMF-matlab
verbose = false;
eta = 1;
% size of input spectrogram
M = size(V, 1);
N = size(V, 2);
% initialization
if nargin == 5
if isfield(initialV, 'H')
H = initialV.H;
else
H = rand(R, N);
end
if isfield(initialV, 'W')
W = initialV.W;
else
W = rand(M, R);
end
if isfield(initialV, 'HRfixed')
HRfixed = initialV.HRfixed;
else
HRfixed = 0;
end
if isfield(initialV, 'WRfixed')
WRfixed = initialV.WRfixed;
else
WRfixed = 0;
end
else
H = rand(R, N);
W = rand(M, R);
HRfixed = 0;
WRfixed = 0;
if nargin == 3
beta = 0;
end
end
% array to save the value of the beta-divergence
bDsave = zeros(Niter, 1);
% computation of Lambda (estimate of V) and of filters repsonse
Lambda = W * H;
% Waitbar
message = ['Computing NMF .... iteration : 0/', int2str(Niter), ' completed'];
h = waitbar(0, message);
% iterative computation
for iter = 1:Niter
% % compute beta divergence and plot its evolution
bDsave(iter) = betaDiv(V+eps, Lambda+eps, beta);
% update of W
if not(WRfixed)
W = W .* ((Lambda.^(beta - 2) .* V) * H' + eps) ./ ((Lambda.^(beta - 1)) * H' + eps);
else
W(:, WRfixed+1:end) = W(:, WRfixed+1:end) .* ((Lambda.^(beta - 2) .* V) * H(WRfixed+1:end, :)' + eps) ./ ((Lambda.^(beta - 1)) * H(WRfixed+1:end, :)' + eps);
end
% recomputation of Lambda (estimate of V)
Lambda = W * H + eps;
% update of H
if not(HRfixed)
H = H .* (W' * (Lambda.^(beta - 2) .* V) + eps) ./ (W' * (Lambda.^(beta - 1)) + eps);
else
H(1:HRfixed, :) = H(1:HRfixed, :) .* (W(:, 1:HRfixed)' * (Lambda.^(beta - 2) .* V) + eps) ./ (W(:, 1:HRfixed)' * (Lambda.^(beta - 1)) + eps);
end
% recomputation of Lambda (estimate of V)
Lambda = W * H + eps;
message = ['computing NMF. iteration : ', int2str(iter), '/', int2str(Niter)];
if verbose
disp(message);
end
waitbar(iter/Niter, h, message);
end
% % normalization
% for r0=1:R
% % normalization of templates
% chosenNorm = 2;
% normW = norm(W(:,r0),chosenNorm);
% H(r0,:) = normW*H(r0,:);
% W(:,r0) = W(:,r0)/normW;
% end
close(h)
% close
end
function bD = betaDiv(V, Vh, beta)
if beta == 0
bD = sum((V(:) ./ Vh(:))-log(V(:)./Vh(:))-1);
elseif beta == 1
bD = sum(V(:).*(log(V(:)) - log(Vh(:)))+Vh(:)-V(:));
else
bD = sum(max(1/(beta * (beta - 1))*(V(:).^beta + (beta - 1) * Vh(:).^beta - beta * V(:) .* Vh(:).^(beta - 1)), 0));
end
end