|
| 1 | +import pytest |
| 2 | +import pandas as pd |
| 3 | +import numpy as np |
| 4 | +from canswim.targets import Targets |
| 5 | +from unittest.mock import patch, MagicMock |
| 6 | +from darts import TimeSeries |
| 7 | + |
| 8 | +@pytest.fixture |
| 9 | +def mock_stock_data(): |
| 10 | + # Create sample stock price data |
| 11 | + dates = pd.date_range(start='2023-01-01', end='2023-01-10', freq='B') |
| 12 | + data = { |
| 13 | + 'AAPL': pd.DataFrame({ |
| 14 | + 'Close': np.random.uniform(150, 160, size=len(dates)), |
| 15 | + 'Open': np.random.uniform(150, 160, size=len(dates)), |
| 16 | + 'High': np.random.uniform(155, 165, size=len(dates)), |
| 17 | + 'Low': np.random.uniform(145, 155, size=len(dates)), |
| 18 | + 'Volume': np.random.randint(1000000, 2000000, size=len(dates)) |
| 19 | + }, index=dates) |
| 20 | + } |
| 21 | + return data |
| 22 | + |
| 23 | +@pytest.fixture |
| 24 | +def targets(): |
| 25 | + return Targets() |
| 26 | + |
| 27 | +def test_targets_initialization(targets): |
| 28 | + """Test that Targets class initializes correctly""" |
| 29 | + assert isinstance(targets, Targets) |
| 30 | + |
| 31 | +@patch('canswim.targets.Targets.load_stock_prices') |
| 32 | +def test_load_data(mock_load_prices, targets, mock_stock_data): |
| 33 | + """Test load_data method with mock stock prices""" |
| 34 | + # Setup test data |
| 35 | + stock_tickers = {'AAPL'} |
| 36 | + start_date = pd.Timestamp('2023-01-01') |
| 37 | + |
| 38 | + # Mock load_stock_prices to set the stock_price_dict |
| 39 | + def mock_load(): |
| 40 | + targets.stock_price_dict = mock_stock_data |
| 41 | + mock_load_prices.side_effect = mock_load |
| 42 | + |
| 43 | + # Call load_data with required parameters |
| 44 | + targets.load_data(stock_tickers=stock_tickers, start_date=start_date) |
| 45 | + |
| 46 | + # Verify the data was loaded correctly |
| 47 | + assert hasattr(targets, 'stock_price_dict') |
| 48 | + assert isinstance(targets.stock_price_dict, dict) |
| 49 | + assert 'AAPL' in targets.stock_price_dict |
| 50 | + |
| 51 | + # Verify DataFrame structure |
| 52 | + df = targets.stock_price_dict['AAPL'] |
| 53 | + assert isinstance(df, pd.DataFrame) |
| 54 | + assert all(col in df.columns for col in ['Close', 'Open', 'High', 'Low', 'Volume']) |
| 55 | + |
| 56 | +def test_pyarrow_filters(targets): |
| 57 | + """Test pyarrow_filters property returns correct filters""" |
| 58 | + # Setup test data |
| 59 | + stock_tickers = {'AAPL', 'MSFT'} |
| 60 | + start_date = pd.Timestamp('2023-01-01') |
| 61 | + |
| 62 | + # Call load_data to set up the required instance variables |
| 63 | + with patch('canswim.targets.Targets.load_stock_prices'): |
| 64 | + targets.load_data(stock_tickers=stock_tickers, start_date=start_date) |
| 65 | + |
| 66 | + # Get filters |
| 67 | + filters = targets.pyarrow_filters |
| 68 | + |
| 69 | + # Verify filter structure |
| 70 | + assert isinstance(filters, list) |
| 71 | + assert len(filters) == 2 |
| 72 | + assert filters[0] == ("Symbol", "in", stock_tickers) |
| 73 | + assert filters[1] == ("Date", ">=", start_date) |
| 74 | + |
| 75 | +@patch('canswim.targets.TimeSeries.from_dataframe') |
| 76 | +@patch('canswim.targets.MissingValuesFiller.transform') |
| 77 | +def test_prepare_stock_price_series(mock_transform, mock_from_df, targets, mock_stock_data): |
| 78 | + """Test prepare_stock_price_series method""" |
| 79 | + # Setup test data |
| 80 | + train_date_start = pd.Timestamp('2023-01-05') |
| 81 | + targets.stock_price_dict = mock_stock_data |
| 82 | + |
| 83 | + # Mock TimeSeries creation and transformation |
| 84 | + mock_series = MagicMock() |
| 85 | + mock_series.gaps.return_value = [] # No gaps after filling |
| 86 | + mock_series.end_time.return_value = pd.Timestamp('2023-01-10') |
| 87 | + mock_transform.return_value = mock_series |
| 88 | + mock_from_df.return_value = mock_series |
| 89 | + |
| 90 | + # Call the method |
| 91 | + result = targets.prepare_stock_price_series(train_date_start=train_date_start) |
| 92 | + |
| 93 | + # Verify results |
| 94 | + assert isinstance(result, dict) |
| 95 | + assert 'AAPL' in result |
| 96 | + assert mock_from_df.called |
| 97 | + assert mock_transform.called |
| 98 | + mock_series.slice.assert_called_with(train_date_start, mock_series.end_time()) |
| 99 | + |
| 100 | +def test_prepare_data(targets, mock_stock_data): |
| 101 | + """Test prepare_data method with univariate target""" |
| 102 | + # Setup mock TimeSeries |
| 103 | + dates = pd.date_range(start='2023-01-01', end='2023-01-10', freq='B') |
| 104 | + mock_series = MagicMock() |
| 105 | + mock_series.univariate_component.return_value = TimeSeries.from_dataframe( |
| 106 | + pd.DataFrame({'Close': np.random.uniform(150, 160, size=len(dates))}, index=dates) |
| 107 | + ) |
| 108 | + |
| 109 | + stock_price_series = {'AAPL': mock_series} |
| 110 | + target_columns = 'Close' |
| 111 | + |
| 112 | + # Call prepare_data |
| 113 | + targets.prepare_data(stock_price_series=stock_price_series, target_columns=target_columns) |
| 114 | + |
| 115 | + # Verify results |
| 116 | + assert hasattr(targets, 'target_series') |
| 117 | + assert isinstance(targets.target_series, dict) |
| 118 | + assert 'AAPL' in targets.target_series |
| 119 | + mock_series.univariate_component.assert_called_with(target_columns) |
| 120 | + |
| 121 | +def test_prepare_data_multivariate(targets, mock_stock_data): |
| 122 | + """Test prepare_data method with multivariate targets""" |
| 123 | + # Setup mock TimeSeries |
| 124 | + dates = pd.date_range(start='2023-01-01', end='2023-01-10', freq='B') |
| 125 | + mock_series = MagicMock() |
| 126 | + mock_series.columns = ['Open', 'Close', 'Volume', 'Extra'] |
| 127 | + mock_series.drop_columns.return_value = TimeSeries.from_dataframe( |
| 128 | + pd.DataFrame({ |
| 129 | + 'Open': np.random.uniform(150, 160, size=len(dates)), |
| 130 | + 'Close': np.random.uniform(150, 160, size=len(dates)), |
| 131 | + 'Volume': np.random.randint(1000000, 2000000, size=len(dates)) |
| 132 | + }, index=dates) |
| 133 | + ) |
| 134 | + |
| 135 | + stock_price_series = {'AAPL': mock_series} |
| 136 | + target_columns = ['Open', 'Close', 'Volume'] |
| 137 | + |
| 138 | + # Call prepare_data |
| 139 | + targets.prepare_data(stock_price_series=stock_price_series, target_columns=target_columns) |
| 140 | + |
| 141 | + # Verify results |
| 142 | + assert hasattr(targets, 'target_series') |
| 143 | + assert isinstance(targets.target_series, dict) |
| 144 | + assert 'AAPL' in targets.target_series |
| 145 | + mock_series.drop_columns.assert_called() |
0 commit comments