-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathensemble.py
67 lines (54 loc) · 1.83 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Ensemble the predictions from different model outputs.
"""
import argparse
import json
import pickle
import numpy as np
from collections import Counter
from data.loader import DataLoader
from utils import scorer, constant
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('pred_files', nargs='+', help='A list of prediction files written by eval.py.')
parser.add_argument('--data_dir', default='dataset/tacred')
parser.add_argument('--dataset', default='test', help='Evaluate on dev or test set.')
args = parser.parse_args()
return args
def main():
args = parse_args()
print("Loading data file...")
filename = args.data_dir + '/{}.json'.format(args.dataset)
with open(filename, 'r') as infile:
data = json.load(infile, encoding='utf8')
labels = [d['relation'] for d in data]
# read predictions
print("Loading {} prediction files...".format(len(args.pred_files)))
scores_list = []
for path in args.pred_files:
print(path)
with open(path, 'rb') as infile:
scores = pickle.load(infile)
scores_list += [scores]
print("Calculating ensembled predictions...")
predictions = []
scores_by_examples = list(zip(*scores_list))
assert len(scores_by_examples) == len(data)
for scores in scores_by_examples:
pred = ensemble(scores)
predictions += [pred]
id2label = dict([(v,k) for k,v in constant.LABEL_TO_ID.items()])
predictions = [id2label[p] for p in predictions]
scorer.score(labels, predictions, verbose=True)
def ensemble(scores):
"""
Ensemble by majority vote.
"""
c = Counter()
for probs in zip(scores):
idx = int(np.argmax(np.array(probs)))
c.update([idx])
best = c.most_common(1)[0][0]
return best
if __name__ == '__main__':
main()