This repository has been archived by the owner on Sep 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathIntSeg_Train.py
278 lines (251 loc) · 15.5 KB
/
IntSeg_Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from __future__ import division
import os,time,cv2
import scipy.io as sio
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
from numpy import *
import scipy.linalg
from copy import copy, deepcopy
def lrelu(x):
return tf.maximum(x*0.2,x)
def identity_initializer():
def _initializer(shape, dtype=tf.float32, partition_info=None):
array = np.zeros(shape, dtype=float)
cx, cy = shape[0]//2, shape[1]//2
for i in range(min(shape[2],shape[3])):
array[cx, cy, i, i] = 1
return tf.constant(array, dtype=dtype)
return _initializer
def nm(x):
w0=tf.Variable(1.0,name='w0')
w1=tf.Variable(0.0,name='w1')
return w0*x+w1*slim.batch_norm(x)
MEAN_VALUES = np.array([123.6800, 116.7790, 103.9390]).reshape((1,1,1,3))
def build_net(ntype,nin,nwb=None,name=None):
if ntype=='conv':
return tf.nn.relu(tf.nn.conv2d(nin,nwb[0],strides=[1,1,1,1],padding='SAME',name=name)+nwb[1])
elif ntype=='pool':
return tf.nn.avg_pool(nin,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
def get_weight_bias(vgg_layers,i):
weights=vgg_layers[i][0][0][2][0][0]
weights=tf.constant(weights)
bias=vgg_layers[i][0][0][2][0][1]
bias=tf.constant(np.reshape(bias,(bias.size)))
return weights,bias
def build_vgg19(input,reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
net={}
vgg_rawnet=scipy.io.loadmat('Models/imagenet-vgg-verydeep-19.mat')
vgg_layers=vgg_rawnet['layers'][0]
net['input']=input-MEAN_VALUES
net['conv1_1']=build_net('conv',net['input'],get_weight_bias(vgg_layers,0),name='vgg_conv1_1')
net['conv1_2']=build_net('conv',net['conv1_1'],get_weight_bias(vgg_layers,2),name='vgg_conv1_2')
net['pool1']=build_net('pool',net['conv1_2'])
net['conv2_1']=build_net('conv',net['pool1'],get_weight_bias(vgg_layers,5),name='vgg_conv2_1')
net['conv2_2']=build_net('conv',net['conv2_1'],get_weight_bias(vgg_layers,7),name='vgg_conv2_2')
net['pool2']=build_net('pool',net['conv2_2'])
net['conv3_1']=build_net('conv',net['pool2'],get_weight_bias(vgg_layers,10),name='vgg_conv3_1')
net['conv3_2']=build_net('conv',net['conv3_1'],get_weight_bias(vgg_layers,12),name='vgg_conv3_2')
net['conv3_3']=build_net('conv',net['conv3_2'],get_weight_bias(vgg_layers,14),name='vgg_conv3_3')
net['conv3_4']=build_net('conv',net['conv3_3'],get_weight_bias(vgg_layers,16),name='vgg_conv3_4')
net['pool3']=build_net('pool',net['conv3_4'])
net['conv4_1']=build_net('conv',net['pool3'],get_weight_bias(vgg_layers,19),name='vgg_conv4_1')
net['conv4_2']=build_net('conv',net['conv4_1'],get_weight_bias(vgg_layers,21),name='vgg_conv4_2')
net['conv4_3']=build_net('conv',net['conv4_2'],get_weight_bias(vgg_layers,23),name='vgg_conv4_3')
net['conv4_4']=build_net('conv',net['conv4_3'],get_weight_bias(vgg_layers,25),name='vgg_conv4_4')
net['pool4']=build_net('pool',net['conv4_4'])
net['conv5_1']=build_net('conv',net['pool4'],get_weight_bias(vgg_layers,28),name='vgg_conv5_1')
net['conv5_2']=build_net('conv',net['conv5_1'],get_weight_bias(vgg_layers,30),name='vgg_conv5_2')
#net['conv5_3']=build_net('conv',net['conv5_2'],get_weight_bias(vgg_layers,32),name='vgg_conv5_3')
#net['conv5_4']=build_net('conv',net['conv5_3'],get_weight_bias(vgg_layers,34),name='vgg_conv5_4')
#net['pool5']=build_net('pool',net['conv5_4'])
return net
def build(input,sz):
vgg19_features=build_vgg19(input[:,:,:,0:3])
for layer_id in range(1,6):
vgg19_f = vgg19_features['conv%d_2'%layer_id]
input = tf.concat([input, tf.image.resize_bilinear(vgg19_f,sz)], axis=3)
input = input/255.0
net=slim.conv2d(input,64,[1,1],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv0')
net=slim.conv2d(net,64,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv1')
net=slim.conv2d(net,64,[3,3],rate=2,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv2')
net=slim.conv2d(net,64,[3,3],rate=4,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv3')
net=slim.conv2d(net,64,[3,3],rate=8,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv4')
net=slim.conv2d(net,64,[3,3],rate=16,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv5')
net=slim.conv2d(net,64,[3,3],rate=32,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv6')
net=slim.conv2d(net,64,[3,3],rate=64,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv7')
net=slim.conv2d(net,64,[3,3],rate=128,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv8')
net=slim.conv2d(net,64,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv9')
net=slim.conv2d(net,6,[1,1],rate=1,activation_fn=None,scope='g_conv_last')
return tf.tanh(net)
def prepare_data():
train_im_names = [line.rstrip() for line in open('./train.txt')]
val_im_names = [line.rstrip() for line in open('./val.txt')]
return train_im_names,val_im_names
config=tf.ConfigProto()
config.gpu_options.allow_growth=True
sess=tf.Session(config=config)
im_path = "./img"
seg_path = "./inst"
train_im_names,val_im_names = prepare_data()
input=tf.placeholder(tf.float32,shape=[None,None,None,7])
output=tf.placeholder(tf.float32,shape=[None,None,None,1])
sz=tf.placeholder(tf.int32,shape=[2])
input_vgg=tf.placeholder(tf.float32,shape=[None,None,None,3])
network=build(input,sz)
vgg19_network=build_vgg19(input_vgg)
# L2 Loss
loss_d1=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,0],axis=3)-output))
loss_d2=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,1],axis=3)-output))
loss_d3=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,2],axis=3)-output))
loss_d4=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,3],axis=3)-output))
loss_d5=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,4],axis=3)-output))
loss_d6=tf.reduce_mean(tf.square(tf.expand_dims(network[:,:,:,5],axis=3)-output))
loss = tf.reduce_min([loss_d1, loss_d2, loss_d3, loss_d4, loss_d5, loss_d6]) + 0.0025*(32*loss_d1+16*loss_d2+8*loss_d3+4*loss_d4+2*loss_d5+1*loss_d6)
# L1 Loss
loss2_d1=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,0],axis=3)-output))
loss2_d2=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,1],axis=3)-output))
loss2_d3=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,2],axis=3)-output))
loss2_d4=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,3],axis=3)-output))
loss2_d5=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,4],axis=3)-output))
loss2_d6=tf.reduce_mean(tf.abs(tf.expand_dims(network[:,:,:,5],axis=3)-output))
loss2 = tf.reduce_min([loss2_d1, loss2_d2, loss2_d3, loss2_d4, loss2_d5, loss2_d6]) + 0.0025*(32*loss2_d1+16*loss2_d2+8*loss2_d3+4*loss2_d4+2*loss2_d5+1*loss2_d6)
# IoU Loss
nw1 = tf.expand_dims(network[:,:,:,0],axis=3)
nw2 = tf.expand_dims(network[:,:,:,1],axis=3)
nw3 = tf.expand_dims(network[:,:,:,2],axis=3)
nw4 = tf.expand_dims(network[:,:,:,3],axis=3)
nw5 = tf.expand_dims(network[:,:,:,4],axis=3)
nw6 = tf.expand_dims(network[:,:,:,5],axis=3)
iou_d1 = 1-tf.reduce_mean(tf.multiply(nw1,output))/(tf.reduce_mean(tf.maximum(nw1,output))+1e-6)
iou_d2 = 1-tf.reduce_mean(tf.multiply(nw2,output))/(tf.reduce_mean(tf.maximum(nw2,output))+1e-6)
iou_d3 = 1-tf.reduce_mean(tf.multiply(nw3,output))/(tf.reduce_mean(tf.maximum(nw3,output))+1e-6)
iou_d4 = 1-tf.reduce_mean(tf.multiply(nw4,output))/(tf.reduce_mean(tf.maximum(nw4,output))+1e-6)
iou_d5 = 1-tf.reduce_mean(tf.multiply(nw5,output))/(tf.reduce_mean(tf.maximum(nw5,output))+1e-6)
iou_d6 = 1-tf.reduce_mean(tf.multiply(nw6,output))/(tf.reduce_mean(tf.maximum(nw6,output))+1e-6)
loss_iou = tf.reduce_min([iou_d1, iou_d2, iou_d3, iou_d4, iou_d5, iou_d6]) + 0.0025*(32*iou_d1+16*iou_d2+8*iou_d3+4*iou_d4+2*iou_d5+1*iou_d6)
# add positive/negative clicks as soft constraints
ct_mask = tf.cast(input[:,:,:,3],dtype=tf.bool) & tf.cast(input[:,:,:,4],dtype=tf.bool)
ct_mask = tf.tile(tf.expand_dims(~ct_mask,axis=3), [1,1,1,6])
ct_mask = tf.cast(ct_mask, dtype=tf.float32)
ct_mask /= tf.reduce_mean(ct_mask)
output_tile = tf.tile(output,[1,1,1,6])
ct_loss = tf.reduce_mean(tf.abs(network - output_tile) * ct_mask)
all_loss = loss_iou + ct_loss
opt=tf.train.AdamOptimizer(learning_rate=0.0001).minimize(all_loss,var_list=[var for var in tf.trainable_variables() if var.name.startswith('g_')])
saver=tf.train.Saver(max_to_keep=1000)
sess.run(tf.initialize_all_variables())
ckpt=tf.train.get_checkpoint_state("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh")
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
input_images=[None]*len(train_im_names)
output_masks=[None]*len(train_im_names)
# For displaying the losses
all=np.zeros(30000,dtype=float)
all2=np.zeros(30000,dtype=float)
all_iou=np.zeros(30000,dtype=float)
all_d1=np.zeros(30000,dtype=float)
all_d2=np.zeros(30000,dtype=float)
all_d3=np.zeros(30000,dtype=float)
all_d4=np.zeros(30000,dtype=float)
all_d5=np.zeros(30000,dtype=float)
all_d6=np.zeros(30000,dtype=float)
for epoch in range(1,101):
if os.path.isdir("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d"%epoch):
continue
cnt=0
for id in np.random.permutation(len(train_im_names)):
# for id in np.random.permutation(1):
if input_images[id] is None:
# The input image
input_images[id] = cv2.imread(im_path + "/" + train_im_names[id]+".jpg",-1)
if output_masks[id] is None:
# The SBD Groundtruth mask
mat_contents = sio.loadmat(seg_path + "/" + train_im_names[id] + ".mat")
tmpstr = mat_contents['GTinst']
tmpmat = tmpstr[0,0]
output_masks[id] = tmpmat['Segmentation']
output_mask = deepcopy(output_masks[id])
output_mask[output_mask==255] = 0
num_obj = output_mask.max()
for obj_id in range(num_obj):
st = time.time()
# random clicks
input_pos = cv2.imread("./train" + "/" + train_im_names[id] + "/ints/%03d_%03d_pos.png" % (obj_id + 1, np.random.randint(1, 16)),-1)
input_neg = cv2.imread("./train" + "/" + train_im_names[id] + "/ints/%03d_%03d_neg.png" % (obj_id + 1, np.random.randint(1, 16)),-1)
input_pos_clks = deepcopy(input_pos)
input_neg_clks = deepcopy(input_neg)
input_pos_clks[input_pos != 0] = 255
input_neg_clks[input_neg != 0] = 255
if np.sum(input_pos==0)==0:
continue
input_image=np.expand_dims(np.float32(np.concatenate(
[input_images[id], np.expand_dims(input_pos,axis=2), np.expand_dims(input_neg,axis=2),
np.expand_dims(input_pos_clks,axis=2), np.expand_dims(input_neg_clks,axis=2)], axis=2)),axis=0)
_,iH,iW,_=input_image.shape
output_image = deepcopy(output_mask)
output_image[output_mask != (obj_id+1)] = 0
output_image[output_mask == (obj_id+1)] = 255
output_image=np.expand_dims(np.expand_dims(np.float32(output_image),axis=0),axis=3)/255.0
_,current,current2,current3,d1,d2,d3,d4,d5,d6=sess.run([opt,loss,loss2,loss_iou, iou_d1, iou_d2, iou_d3, iou_d4, iou_d5, iou_d6],feed_dict={input:input_image,sz:[iH,iW],output:output_image})
all[cnt]=current*255.0*255.0 #squared in 255 range (remember the network takes [0,1]
all2[cnt]=current2*255.0 #changed to 255 in error
all_iou[cnt]=current3
all_d1[cnt]=d1
all_d2[cnt]=d2
all_d3[cnt]=d3
all_d4[cnt]=d4
all_d5[cnt]=d5
all_d6[cnt]=d6
cnt+=1
print("%d %d l2: %.4f l1: %.4f IoU: %.4f d1-6: %.4f %.4f %.4f %.4f %.4f %.4f time: %.4f %s"%(epoch,cnt,np.mean(all[np.where(all)]),np.mean(all2[np.where(all2)]),np.mean(all_iou[np.where(all_iou)]),np.mean(all_d1[np.where(all_d1)]),
np.mean(all_d2[np.where(all_d2)]),np.mean(all_d3[np.where(all_d3)]),np.mean(all_d4[np.where(all_d4)]), np.mean(all_d5[np.where(all_d5)]), np.mean(all_d6[np.where(all_d6)]),
time.time()-st,os.getcwd().split('/')[-2]))
os.makedirs("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d"%epoch)
target=open("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/score.txt"%epoch,'w')
target.write("%f\n%f\n%f"%(np.mean(all[np.where(all)]),np.mean(all2[np.where(all2)]),np.mean(all_iou[np.where(all_iou)])))
target.close()
saver.save(sess,"result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/model.ckpt")
saver.save(sess,"result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/model.ckpt"%epoch)
# validation
all_test = np.zeros(100, dtype=float)
all2_test = np.zeros(100, dtype=float)
all_iou_test = np.zeros(100, dtype=float)
target = open("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/test_score.txt" % epoch, 'w')
for id in range(100):
input_image = cv2.imread(im_path + "/" + val_im_names[id] + ".jpg", -1)
input_pos = cv2.imread("./val" + "/" + val_im_names[id] + "/ints/%03d_%03d_pos.png" % (1, 1), -1)
input_neg = cv2.imread("./val" + "/" + val_im_names[id] + "/ints/%03d_%03d_neg.png" % (1, 1), -1)
input_pos_clks = deepcopy(input_pos)
input_neg_clks = deepcopy(input_neg)
input_pos_clks[input_pos != 0] = 255
input_neg_clks[input_neg != 0] = 255
output_gt = cv2.imread("./val" + "/" + val_im_names[id] + "/objs/%05d.png" % 1, -1)
output_gt = np.expand_dims(np.expand_dims(np.float32(output_gt), axis=0), axis=3) / 255.0
iH, iW, _ = input_image.shape
input_image = np.expand_dims(np.float32(np.concatenate(
[input_image, np.expand_dims(input_pos, axis=2), np.expand_dims(input_neg, axis=2),
np.expand_dims(input_pos_clks, axis=2), np.expand_dims(input_neg_clks, axis=2)], axis=2)), axis=0)
st=time.time()
output_image, loss_test, loss2_test, iou_test = sess.run([network, loss, loss2, loss_iou],feed_dict={input:input_image,sz:[iH,iW],output: output_gt})
all_test[id] = loss_test * 255.0 * 255.0
all2_test[id] = loss2_test * 255
all_iou_test[id] = iou_test
target.write("%f %f %f\n" % (all_test[id], all2_test[id], all_iou_test[id]))
print("%.3f"%(time.time()-st))
output_image = np.minimum(np.maximum(output_image, 0.0), 1.0)
for output_d in range(6):
save_image = input_image[0, :, :, 0:3] / 255.0
save_image[:, :, 0] = (save_image[:, :, 0] + 0.5 * output_image[0, :, :, output_d])
save_image[:, :, 1] = (save_image[:, :, 1] + 0.5 * output_image[0, :, :, output_d])
save_image[:, :, 2] = (save_image[:, :, 2] + 0.5 * output_image[0, :, :, output_d])
save_image = np.minimum(np.maximum(save_image, 0.0), 1.0) * 255.0
cv2.imwrite("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/%s_%02d_BW.png" % (epoch, val_im_names[id], output_d),
np.uint8(output_image[0, :, :, output_d] * 255.0))
cv2.imwrite("result64_vgg19_RDL6_IoU_dt_pt_ct_tanh/%04d/%s_%02d.jpg" % (epoch, val_im_names[id], output_d),
np.uint8(save_image))
target.write("Mean: %f %f %f\n" % (np.mean(all_test[np.where(all_test)]), np.mean(all2_test[np.where(all2_test)]), np.mean(all_iou_test[np.where(all_iou_test)])))
target.close()