forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_train.py
205 lines (186 loc) · 7.34 KB
/
cluster_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import argparse
import logging
import paddle.fluid as fluid
import paddle
import utils
import numpy as np
from nets import SequenceSemanticRetrieval
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser("sequence semantic retrieval")
parser.add_argument(
"--train_dir", type=str, default='train_data', help="Training file")
parser.add_argument(
"--base_lr", type=float, default=0.01, help="learning rate")
parser.add_argument(
'--vocab_path', type=str, default='vocab.txt', help='vocab file')
parser.add_argument(
"--epochs", type=int, default=10, help="Number of epochs")
parser.add_argument(
'--parallel', type=int, default=0, help='whether parallel')
parser.add_argument(
'--use_cuda', type=int, default=0, help='whether use gpu')
parser.add_argument(
'--print_batch', type=int, default=10, help='num of print batch')
parser.add_argument(
'--model_dir', type=str, default='model_output', help='model dir')
parser.add_argument(
"--hidden_size", type=int, default=128, help="hidden size")
parser.add_argument(
"--batch_size", type=int, default=50, help="number of batch")
parser.add_argument(
"--embedding_dim", type=int, default=128, help="embedding dim")
parser.add_argument(
'--num_devices', type=int, default=1, help='Number of GPU devices')
parser.add_argument(
'--step_num', type=int, default=1000, help='Number of steps')
parser.add_argument(
'--enable_ce',
action='store_true',
help='If set, run the task with continuous evaluation logs.')
parser.add_argument(
'--role', type=str, default='pserver', help='trainer or pserver')
parser.add_argument(
'--endpoints',
type=str,
default='127.0.0.1:6000',
help='The pserver endpoints, like: 127.0.0.1:6000, 127.0.0.1:6001')
parser.add_argument(
'--current_endpoint',
type=str,
default='127.0.0.1:6000',
help='The current_endpoint')
parser.add_argument(
'--trainer_id',
type=int,
default=0,
help='trainer id ,only trainer_id=0 save model')
parser.add_argument(
'--trainers',
type=int,
default=1,
help='The num of trianers, (default: 1)')
return parser.parse_args()
def get_cards(args):
return args.num_devices
def train_loop(main_program, avg_cost, acc, train_input_data, place, args,
train_reader):
data_list = [var.name for var in train_input_data]
feeder = fluid.DataFeeder(feed_list=data_list, place=place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_exe = exe
total_time = 0.0
ce_info = []
for pass_id in range(args.epochs):
epoch_idx = pass_id + 1
print("epoch_%d start" % epoch_idx)
t0 = time.time()
i = 0
for batch_id, data in enumerate(train_reader()):
i += 1
loss_val, correct_val = train_exe.run(
feed=feeder.feed(data), fetch_list=[avg_cost.name, acc.name])
ce_info.append(float(np.mean(correct_val)) / args.batch_size)
if i % args.print_batch == 0:
logger.info(
"Train --> pass: {} batch_id: {} avg_cost: {}, acc: {}".
format(pass_id, batch_id,
np.mean(loss_val),
float(np.mean(correct_val)) / args.batch_size))
if args.enable_ce and i > args.step_num:
break
t1 = time.time()
total_time += t1 - t0
print("epoch:%d num_steps:%d time_cost(s):%f" %
(epoch_idx, i, total_time / epoch_idx))
save_dir = "%s/epoch_%d" % (args.model_dir, epoch_idx)
fluid.io.save_params(executor=exe, dirname=save_dir)
print("model saved in %s" % save_dir)
# only for ce
if args.enable_ce:
ce_acc = 0
try:
ce_acc = ce_info[-2]
except:
print("ce info error")
epoch_idx = args.epochs
device = get_device(args)
if args.use_cuda:
gpu_num = device[1]
print("kpis\teach_pass_duration_gpu%s\t%s" %
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_acc_gpu%s\t%s" % (gpu_num, ce_acc))
else:
cpu_num = device[1]
threads_num = device[2]
print("kpis\teach_pass_duration_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, total_time / epoch_idx))
print("kpis\ttrain_acc_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, ce_acc))
def train(args):
if args.enable_ce:
SEED = 102
fluid.default_startup_program().random_seed = SEED
fluid.default_main_program().random_seed = SEED
use_cuda = True if args.use_cuda else False
parallel = True if args.parallel else False
print("use_cuda:", use_cuda, "parallel:", parallel)
train_reader, vocab_size = utils.construct_train_data(
args.train_dir, args.vocab_path, args.batch_size * get_cards(args))
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
ssr = SequenceSemanticRetrieval(vocab_size, args.embedding_dim,
args.hidden_size)
# Train program
train_input_data, cos_pos, avg_cost, acc = ssr.train()
# Optimization to minimize lost
optimizer = fluid.optimizer.Adagrad(learning_rate=args.base_lr)
optimizer.minimize(avg_cost)
print("run distribute training")
t = fluid.DistributeTranspiler()
t.transpile(
args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
if args.role == "pserver":
print("run psever")
pserver_prog = t.get_pserver_program(args.current_endpoint)
pserver_startup = t.get_startup_program(args.current_endpoint,
pserver_prog)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(pserver_startup)
exe.run(pserver_prog)
elif args.role == "trainer":
print("run trainer")
train_loop(t.get_trainer_program(), avg_cost, acc, train_input_data,
place, args, train_reader)
def get_device(args):
if args.use_cuda:
gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
gpu_num = len(gpus.split(','))
return "gpu", gpu_num
else:
threads_num = os.environ.get('NUM_THREADS', 1)
cpu_num = os.environ.get('CPU_NUM', 1)
return "cpu", int(cpu_num), int(threads_num)
def main():
args = parse_args()
train(args)
if __name__ == "__main__":
main()