forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
173 lines (156 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import six
import numpy as np
import math
import argparse
import logging
import paddle.fluid as fluid
import paddle
import time
import reader as reader
from nets import MultiviewSimnet, SimpleEncoderFactory
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser("multi-view simnet")
parser.add_argument("--train_file", type=str, help="Training file")
parser.add_argument("--valid_file", type=str, help="Validation file")
parser.add_argument(
"--epochs", type=int, default=10, help="Number of epochs for training")
parser.add_argument(
"--model_output_dir",
type=str,
default='model_output',
help="Model output folder")
parser.add_argument(
"--query_slots", type=int, default=1, help="Number of query slots")
parser.add_argument(
"--title_slots", type=int, default=1, help="Number of title slots")
parser.add_argument(
"--query_encoder",
type=str,
default="bow",
help="Encoder module for slot encoding")
parser.add_argument(
"--title_encoder",
type=str,
default="bow",
help="Encoder module for slot encoding")
parser.add_argument(
"--query_encode_dim",
type=int,
default=128,
help="Dimension of query encoder output")
parser.add_argument(
"--title_encode_dim",
type=int,
default=128,
help="Dimension of title encoder output")
parser.add_argument(
"--batch_size", type=int, default=128, help="Batch size for training")
parser.add_argument(
"--embedding_dim",
type=int,
default=128,
help="Default Dimension of Embedding")
parser.add_argument(
"--sparse_feature_dim",
type=int,
default=1000001,
help="Sparse feature hashing space"
"for index processing")
parser.add_argument(
"--hidden_size", type=int, default=128, help="Hidden dim")
parser.add_argument(
'--enable_ce',
action='store_true',
help='If set, run the task with continuous evaluation logs.')
return parser.parse_args()
def start_train(args):
if args.enable_ce:
SEED = 102
fluid.default_startup_program().random_seed = SEED
fluid.default_startup_program().random_seed = SEED
dataset = reader.SyntheticDataset(args.sparse_feature_dim, args.query_slots,
args.title_slots)
train_reader = paddle.batch(
paddle.reader.shuffle(
dataset.train(), buf_size=args.batch_size * 100),
batch_size=args.batch_size)
place = fluid.CPUPlace()
factory = SimpleEncoderFactory()
query_encoders = [
factory.create(args.query_encoder, args.query_encode_dim)
for i in range(args.query_slots)
]
title_encoders = [
factory.create(args.title_encoder, args.title_encode_dim)
for i in range(args.title_slots)
]
m_simnet = MultiviewSimnet(args.sparse_feature_dim, args.embedding_dim,
args.hidden_size)
m_simnet.set_query_encoder(query_encoders)
m_simnet.set_title_encoder(title_encoders)
all_slots, avg_cost, correct = m_simnet.train_net()
optimizer = fluid.optimizer.Adam(learning_rate=1e-4)
optimizer.minimize(avg_cost)
startup_program = fluid.default_startup_program()
loop_program = fluid.default_main_program()
feeder = fluid.DataFeeder(feed_list=all_slots, place=place)
exe = fluid.Executor(place)
exe.run(startup_program)
total_time = 0
ce_info = []
for pass_id in range(args.epochs):
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
loss_val, correct_val = exe.run(loop_program,
feed=feeder.feed(data),
fetch_list=[avg_cost, correct])
logger.info("TRAIN --> pass: {} batch_id: {} avg_cost: {}, acc: {}"
.format(pass_id, batch_id, loss_val,
float(correct_val) / args.batch_size))
ce_info.append(loss_val[0])
end_time = time.time()
total_time += end_time - start_time
fluid.io.save_inference_model(args.model_output_dir,
[val.name for val in all_slots],
[avg_cost, correct], exe)
# only for ce
if args.enable_ce:
threads_num, cpu_num = get_cards(args)
epoch_idx = args.epochs
ce_loss = 0
try:
ce_loss = ce_info[-2]
except:
logger.error("ce info error")
print("kpis\teach_pass_duration_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, total_time / epoch_idx))
print("kpis\ttrain_loss_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, ce_loss))
def get_cards(args):
threads_num = os.environ.get('NUM_THREADS', 1)
cpu_num = os.environ.get('CPU_NUM', 1)
return int(threads_num), int(cpu_num)
def main():
args = parse_args()
start_train(args)
if __name__ == "__main__":
main()