forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnets.py
243 lines (204 loc) · 7.86 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
import paddle.fluid.layers.io as io
class BowEncoder(object):
""" bow-encoder """
def __init__(self):
self.param_name = ""
def forward(self, emb):
return nn.sequence_pool(input=emb, pool_type='sum')
class CNNEncoder(object):
""" cnn-encoder"""
def __init__(self,
param_name="cnn",
win_size=3,
ksize=128,
act='tanh',
pool_type='max'):
self.param_name = param_name
self.win_size = win_size
self.ksize = ksize
self.act = act
self.pool_type = pool_type
def forward(self, emb):
return fluid.nets.sequence_conv_pool(
input=emb,
num_filters=self.ksize,
filter_size=self.win_size,
act=self.act,
pool_type=self.pool_type,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
class GrnnEncoder(object):
""" grnn-encoder """
def __init__(self, param_name="grnn", hidden_size=128):
self.param_name = param_name
self.hidden_size = hidden_size
def forward(self, emb):
fc0 = nn.fc(
input=emb,
size=self.hidden_size * 3,
param_attr=self.param_name + "_fc.w",
bias_attr=False)
gru_h = nn.dynamic_gru(
input=fc0,
size=self.hidden_size,
is_reverse=False,
param_attr=self.param_name + ".param",
bias_attr=self.param_name + ".bias")
return nn.sequence_pool(input=gru_h, pool_type='max')
'''this is a very simple Encoder factory
most default argument values are used'''
class SimpleEncoderFactory(object):
def __init__(self):
pass
''' create an encoder through create function '''
def create(self, enc_type, enc_hid_size):
if enc_type == "bow":
bow_encode = BowEncoder()
return bow_encode
elif enc_type == "cnn":
cnn_encode = CNNEncoder(ksize=enc_hid_size)
return cnn_encode
elif enc_type == "gru":
rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
return rnn_encode
class MultiviewSimnet(object):
""" multi-view simnet """
def __init__(self, embedding_size, embedding_dim, hidden_size):
self.embedding_size = embedding_size
self.embedding_dim = embedding_dim
self.emb_shape = [self.embedding_size, self.embedding_dim]
self.hidden_size = hidden_size
self.margin = 0.1
def set_query_encoder(self, encoders):
self.query_encoders = encoders
def set_title_encoder(self, encoders):
self.title_encoders = encoders
def get_correct(self, x, y):
less = tensor.cast(cf.less_than(x, y), dtype='float32')
correct = nn.reduce_sum(less)
return correct
def train_net(self):
# input fields for query, pos_title, neg_title
q_slots = [
io.data(
name="q%d" % i, shape=[1], lod_level=1, dtype='int64')
for i in range(len(self.query_encoders))
]
pt_slots = [
io.data(
name="pt%d" % i, shape=[1], lod_level=1, dtype='int64')
for i in range(len(self.title_encoders))
]
nt_slots = [
io.data(
name="nt%d" % i, shape=[1], lod_level=1, dtype='int64')
for i in range(len(self.title_encoders))
]
# lookup embedding for each slot
q_embs = [
nn.embedding(
input=query, size=self.emb_shape, param_attr="emb")
for query in q_slots
]
pt_embs = [
nn.embedding(
input=title, size=self.emb_shape, param_attr="emb")
for title in pt_slots
]
nt_embs = [
nn.embedding(
input=title, size=self.emb_shape, param_attr="emb")
for title in nt_slots
]
# encode each embedding field with encoder
q_encodes = [
self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
]
pt_encodes = [
self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
]
nt_encodes = [
self.title_encoders[i].forward(emb) for i, emb in enumerate(nt_embs)
]
# concat multi view for query, pos_title, neg_title
q_concat = nn.concat(q_encodes)
pt_concat = nn.concat(pt_encodes)
nt_concat = nn.concat(nt_encodes)
# projection of hidden layer
q_hid = nn.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b')
pt_hid = nn.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b')
nt_hid = nn.fc(nt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b')
# cosine of hidden layers
cos_pos = nn.cos_sim(q_hid, pt_hid)
cos_neg = nn.cos_sim(q_hid, nt_hid)
# pairwise hinge_loss
loss_part1 = nn.elementwise_sub(
tensor.fill_constant_batch_size_like(
input=cos_pos,
shape=[-1, 1],
value=self.margin,
dtype='float32'),
cos_pos)
loss_part2 = nn.elementwise_add(loss_part1, cos_neg)
loss_part3 = nn.elementwise_max(
tensor.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_part2)
avg_cost = nn.mean(loss_part3)
correct = self.get_correct(cos_neg, cos_pos)
return q_slots + pt_slots + nt_slots, avg_cost, correct
def pred_net(self, query_fields, pos_title_fields, neg_title_fields):
q_slots = [
io.data(
name="q%d" % i, shape=[1], lod_level=1, dtype='int64')
for i in range(len(self.query_encoders))
]
pt_slots = [
io.data(
name="pt%d" % i, shape=[1], lod_level=1, dtype='int64')
for i in range(len(self.title_encoders))
]
# lookup embedding for each slot
q_embs = [
nn.embedding(
input=query, size=self.emb_shape, param_attr="emb")
for query in q_slots
]
pt_embs = [
nn.embedding(
input=title, size=self.emb_shape, param_attr="emb")
for title in pt_slots
]
# encode each embedding field with encoder
q_encodes = [
self.query_encoder[i].forward(emb) for i, emb in enumerate(q_embs)
]
pt_encodes = [
self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
]
# concat multi view for query, pos_title, neg_title
q_concat = nn.concat(q_encodes)
pt_concat = nn.concat(pt_encodes)
# projection of hidden layer
q_hid = nn.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w', bias_attr='q_fc.b')
pt_hid = nn.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w', bias_attr='t_fc.b')
# cosine of hidden layers
cos = nn.cos_sim(q_hid, pt_hid)
return cos