forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
193 lines (165 loc) · 5.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import sys
import collections
import six
import time
import numpy as np
import paddle.fluid as fluid
import paddle
import os
def to_lodtensor(data, place):
""" convert to LODtensor """
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def to_lodtensor_bpr(raw_data, neg_size, vocab_size, place):
""" convert to LODtensor """
data = [dat[0] for dat in raw_data]
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
data = [dat[1] for dat in raw_data]
pos_data = np.concatenate(data, axis=0).astype("int64")
length = np.size(pos_data)
neg_data = np.tile(pos_data, neg_size)
np.random.shuffle(neg_data)
for ii in range(length * neg_size):
if neg_data[ii] == pos_data[ii // neg_size]:
neg_data[ii] = pos_data[length - 1 - ii // neg_size]
label_data = np.column_stack(
(pos_data.reshape(length, 1), neg_data.reshape(length, neg_size)))
res_label = fluid.LoDTensor()
res_label.set(label_data, place)
res_label.set_lod([lod])
res_pos = fluid.LoDTensor()
res_pos.set(np.zeros([len(flattened_data), 1]).astype("int64"), place)
res_pos.set_lod([lod])
return res, res_pos, res_label
def to_lodtensor_bpr_test(raw_data, vocab_size, place):
""" convert to LODtensor """
data = [dat[0] for dat in raw_data]
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
data = [dat[1] for dat in raw_data]
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res_pos = fluid.LoDTensor()
res_pos.set(flattened_data, place)
res_pos.set_lod([lod])
return res, res_pos
def get_vocab_size(vocab_path):
with open(vocab_path, "r") as rf:
line = rf.readline()
return int(line.strip())
def prepare_data(file_dir,
vocab_path,
batch_size,
buffer_size=1000,
word_freq_threshold=0,
is_train=True):
""" prepare the English Pann Treebank (PTB) data """
print("start constuct word dict")
if is_train:
vocab_size = get_vocab_size(vocab_path)
reader = sort_batch(
paddle.reader.shuffle(
train(
file_dir, buffer_size, data_type=DataType.SEQ),
buf_size=buffer_size),
batch_size,
batch_size * 20)
else:
vocab_size = get_vocab_size(vocab_path)
reader = paddle.batch(
test(
file_dir, buffer_size, data_type=DataType.SEQ), batch_size)
return vocab_size, reader
def sort_batch(reader, batch_size, sort_group_size, drop_last=False):
"""
Create a batched reader.
:param reader: the data reader to read from.
:type reader: callable
:param batch_size: size of each mini-batch
:type batch_size: int
:param sort_group_size: size of partial sorted batch
:type sort_group_size: int
:param drop_last: drop the last batch, if the size of last batch is not equal to batch_size.
:type drop_last: bool
:return: the batched reader.
:rtype: callable
"""
def batch_reader():
r = reader()
b = []
for instance in r:
b.append(instance)
if len(b) == sort_group_size:
sortl = sorted(b, key=lambda x: len(x[0]), reverse=True)
b = []
c = []
for sort_i in sortl:
c.append(sort_i)
if (len(c) == batch_size):
yield c
c = []
if drop_last == False and len(b) != 0:
sortl = sorted(b, key=lambda x: len(x[0]), reverse=True)
c = []
for sort_i in sortl:
c.append(sort_i)
if (len(c) == batch_size):
yield c
c = []
# Batch size check
batch_size = int(batch_size)
if batch_size <= 0:
raise ValueError("batch_size should be a positive integeral value, "
"but got batch_size={}".format(batch_size))
return batch_reader
class DataType(object):
SEQ = 2
def reader_creator(file_dir, n, data_type):
def reader():
files = os.listdir(file_dir)
for fi in files:
with open(file_dir + '/' + fi, "r") as f:
for l in f:
if DataType.SEQ == data_type:
l = l.strip().split()
l = [w for w in l]
src_seq = l[:len(l) - 1]
trg_seq = l[1:]
if n > 0 and len(src_seq) > n: continue
yield src_seq, trg_seq
else:
assert False, 'error data type'
return reader
def train(train_dir, n, data_type=DataType.SEQ):
return reader_creator(train_dir, n, data_type)
def test(test_dir, n, data_type=DataType.SEQ):
return reader_creator(test_dir, n, data_type)