forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sample_neg.py
131 lines (114 loc) · 4.29 KB
/
train_sample_neg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import sys
import time
import six
import numpy as np
import math
import argparse
import paddle.fluid as fluid
import paddle
import time
import utils
import net
SEED = 102
def parse_args():
parser = argparse.ArgumentParser("gru4rec benchmark.")
parser.add_argument(
'--train_dir', type=str, default='train_data', help='train file')
parser.add_argument(
'--vocab_path', type=str, default='vocab.txt', help='vocab file')
parser.add_argument(
'--is_local', type=int, default=1, help='whether is local')
parser.add_argument(
'--hid_size', type=int, default=100, help='hidden-dim size')
parser.add_argument(
'--neg_size', type=int, default=10, help='neg item size')
parser.add_argument(
'--loss', type=str, default="bpr", help='loss: bpr/cross_entropy')
parser.add_argument(
'--model_dir', type=str, default='model_neg_recall20', help='model dir')
parser.add_argument(
'--batch_size', type=int, default=5, help='num of batch size')
parser.add_argument(
'--print_batch', type=int, default=10, help='num of print batch')
parser.add_argument(
'--pass_num', type=int, default=10, help='number of epoch')
parser.add_argument(
'--use_cuda', type=int, default=0, help='whether use gpu')
parser.add_argument(
'--parallel', type=int, default=0, help='whether parallel')
parser.add_argument(
'--base_lr', type=float, default=0.01, help='learning rate')
parser.add_argument(
'--num_devices', type=int, default=1, help='Number of GPU devices')
args = parser.parse_args()
return args
def get_cards(args):
return args.num_devices
def train():
""" do training """
args = parse_args()
hid_size = args.hid_size
train_dir = args.train_dir
vocab_path = args.vocab_path
use_cuda = True if args.use_cuda else False
parallel = True if args.parallel else False
print("use_cuda:", use_cuda, "parallel:", parallel)
batch_size = args.batch_size
vocab_size, train_reader = utils.prepare_data(
train_dir, vocab_path, batch_size=batch_size * get_cards(args),\
buffer_size=1000, word_freq_threshold=0, is_train=True)
# Train program
if args.loss == 'bpr':
print('bpr loss')
src, pos_label, label, avg_cost = net.train_bpr_network(
neg_size=args.neg_size, vocab_size=vocab_size, hid_size=hid_size)
else:
print('cross-entory loss')
src, pos_label, label, avg_cost = net.train_cross_entropy_network(
neg_size=args.neg_size, vocab_size=vocab_size, hid_size=hid_size)
# Optimization to minimize lost
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=args.base_lr)
sgd_optimizer.minimize(avg_cost)
# Initialize executor
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if parallel:
train_exe = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=avg_cost.name)
else:
train_exe = exe
pass_num = args.pass_num
model_dir = args.model_dir
fetch_list = [avg_cost.name]
total_time = 0.0
for pass_idx in six.moves.xrange(pass_num):
epoch_idx = pass_idx + 1
print("epoch_%d start" % epoch_idx)
t0 = time.time()
i = 0
newest_ppl = 0
for data in train_reader():
i += 1
ls, lp, ll = utils.to_lodtensor_bpr(data, args.neg_size, vocab_size,
place)
ret_avg_cost = train_exe.run(
feed={"src": ls,
"label": ll,
"pos_label": lp},
fetch_list=fetch_list)
avg_ppl = np.exp(ret_avg_cost[0])
newest_ppl = np.mean(avg_ppl)
if i % args.print_batch == 0:
print("step:%d ppl:%.3f" % (i, newest_ppl))
t1 = time.time()
total_time += t1 - t0
print("epoch:%d num_steps:%d time_cost(s):%f" %
(epoch_idx, i, total_time / epoch_idx))
save_dir = "%s/epoch_%d" % (model_dir, epoch_idx)
fluid.io.save_params(executor=exe, dirname=save_dir)
print("model saved in %s" % save_dir)
print("finish training")
if __name__ == "__main__":
train()