forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
123 lines (117 loc) · 3.39 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Deep Attention Matching Network
"""
import argparse
import six
def parse_args():
"""
Deep Attention Matching Network Config
"""
parser = argparse.ArgumentParser("DAM Config")
parser.add_argument(
'--do_train',
type=bool,
default=False,
help='Whether to perform training.')
parser.add_argument(
'--do_test',
type=bool,
default=False,
help='Whether to perform training.')
parser.add_argument(
'--batch_size',
type=int,
default=256,
help='Batch size for training. (default: %(default)d)')
parser.add_argument(
'--num_scan_data',
type=int,
default=2,
help='Number of pass for training. (default: %(default)d)')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help='Learning rate used to train. (default: %(default)f)')
parser.add_argument(
'--data_path',
type=str,
default="data/data_small.pkl",
help='Path to training data. (default: %(default)s)')
parser.add_argument(
'--save_path',
type=str,
default="saved_models",
help='Path to save trained models. (default: %(default)s)')
parser.add_argument(
'--model_path',
type=str,
default=None,
help='Path to load well-trained models. (default: %(default)s)')
parser.add_argument(
'--use_cuda',
action='store_true',
help='If set, use cuda for training.')
parser.add_argument(
'--use_pyreader',
action='store_true',
help='If set, use pyreader for reading data.')
parser.add_argument(
'--ext_eval',
action='store_true',
help='If set, use MAP, MRR ect for evaluation.')
parser.add_argument(
'--max_turn_num',
type=int,
default=9,
help='Maximum number of utterances in context.')
parser.add_argument(
'--max_turn_len',
type=int,
default=50,
help='Maximum length of setences in turns.')
parser.add_argument(
'--word_emb_init',
type=str,
default=None,
help='Path to the initial word embedding.')
parser.add_argument(
'--vocab_size',
type=int,
default=434512,
help='The size of vocabulary.')
parser.add_argument(
'--emb_size',
type=int,
default=200,
help='The dimension of word embedding.')
parser.add_argument(
'--_EOS_',
type=int,
default=28270,
help='The id for the end of sentence in vocabulary.')
parser.add_argument(
'--stack_num',
type=int,
default=5,
help='The number of stacked attentive modules in network.')
parser.add_argument(
'--channel1_num',
type=int,
default=32,
help="The channels' number of the 1st conv3d layer's output.")
parser.add_argument(
'--channel2_num',
type=int,
default=16,
help="The channels' number of the 2nd conv3d layer's output.")
args = parser.parse_args()
return args
def print_arguments(args):
"""
Print Config
"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(six.iteritems(vars(args))):
print('%s: %s' % (arg, value))
print('------------------------------------------------')