forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (149 loc) · 6.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import numpy as np
import time
import sys
import paddle
import paddle.fluid as fluid
from resnet import TSN_ResNet
import reader
import argparse
import functools
from paddle.fluid.framework import Parameter
from utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 128, "Minibatch size.")
add_arg('num_layers', int, 50, "How many layers for ResNet model.")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('num_epochs', int, 60, "Number of epochs.")
add_arg('class_dim', int, 101, "Number of class.")
add_arg('seg_num', int, 7, "Number of segments.")
add_arg('image_shape', str, "3,224,224", "Input image size.")
add_arg('model_save_dir', str, "output", "Model save directory.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('total_videos', int, 9537, "Training video number.")
add_arg('lr_init', float, 0.01, "Set initial learning rate.")
# yapf: enable
def train(args):
# parameters from arguments
seg_num = args.seg_num
class_dim = args.class_dim
num_layers = args.num_layers
num_epochs = args.num_epochs
batch_size = args.batch_size
pretrained_model = args.pretrained_model
model_save_dir = args.model_save_dir
image_shape = [int(m) for m in args.image_shape.split(",")]
image_shape = [seg_num] + image_shape
# model definition
model = TSN_ResNet(layers=num_layers, seg_num=seg_num)
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = model.net(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
# for test
inference_program = fluid.default_main_program().clone(for_test=True)
# learning rate strategy
epoch_points = [num_epochs / 3, num_epochs * 2 / 3]
total_videos = args.total_videos
step = int(total_videos / batch_size + 1)
bd = [e * step for e in epoch_points]
lr_init = args.lr_init
lr = [lr_init, lr_init / 10, lr_init / 100]
# initialize optimizer
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opts = optimizer.minimize(avg_cost)
if args.with_mem_opt:
fluid.memory_optimize(fluid.default_main_program())
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
def is_parameter(var):
if isinstance(var, Parameter):
return isinstance(var, Parameter) and (not ("fc_0" in var.name))
if pretrained_model is not None:
vars = filter(is_parameter, inference_program.list_vars())
fluid.io.load_vars(exe, pretrained_model, vars=vars)
# reader
train_reader = paddle.batch(reader.train(seg_num), batch_size=batch_size, drop_last=True)
# test in single GPU
test_reader = paddle.batch(reader.test(seg_num), batch_size=batch_size / 16)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]
# train
for pass_id in range(num_epochs):
train_info = [[], [], []]
test_info = [[], [], []]
for batch_id, data in enumerate(train_reader()):
t1 = time.time()
loss, acc1, acc5 = train_exe.run(fetch_list, feed=feeder.feed(data))
t2 = time.time()
period = t2 - t1
loss = np.mean(np.array(loss))
acc1 = np.mean(np.array(acc1))
acc5 = np.mean(np.array(acc5))
train_info[0].append(loss)
train_info[1].append(acc1)
train_info[2].append(acc5)
if batch_id % 10 == 0:
print(
"[TRAIN] Pass: {0}\ttrainbatch: {1}\tloss: {2}\tacc1: {3}\tacc5: {4}\ttime: {5}"
.format(pass_id, batch_id, '%.6f' % loss, acc1, acc5,
"%2.2f sec" % period))
sys.stdout.flush()
train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean()
# test
cnt = 0
for batch_id, data in enumerate(test_reader()):
t1 = time.time()
loss, acc1, acc5 = exe.run(inference_program,
fetch_list=fetch_list,
feed=feeder.feed(data))
t2 = time.time()
period = t2 - t1
loss = np.mean(loss)
acc1 = np.mean(acc1)
acc5 = np.mean(acc5)
test_info[0].append(loss * len(data))
test_info[1].append(acc1 * len(data))
test_info[2].append(acc5 * len(data))
cnt += len(data)
if batch_id % 10 == 0:
print(
"[TEST] Pass: {0}\ttestbatch: {1}\tloss: {2}\tacc1: {3}\tacc5: {4}\ttime: {5}"
.format(pass_id, batch_id, '%.6f' % loss, acc1, acc5,
"%2.2f sec" % period))
sys.stdout.flush()
test_loss = np.sum(test_info[0]) / cnt
test_acc1 = np.sum(test_info[1]) / cnt
test_acc5 = np.sum(test_info[2]) / cnt
print(
"+ End pass: {0}, train_loss: {1}, train_acc1: {2}, train_acc5: {3}"
.format(pass_id, '%.3f' % train_loss, '%.3f' % train_acc1, '%.3f' %
train_acc5))
print("+ End pass: {0}, test_loss: {1}, test_acc1: {2}, test_acc5: {3}"
.format(pass_id, '%.3f' % test_loss, '%.3f' % test_acc1, '%.3f' %
test_acc5))
sys.stdout.flush()
# save model
model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
def main():
args = parser.parse_args()
print_arguments(args)
train(args)
if __name__ == '__main__':
main()