forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
210 lines (168 loc) · 5.15 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
import math
import random
import functools
try:
import cPickle as pickle
from cStringIO import StringIO
except ImportError:
import pickle
from io import BytesIO
import numpy as np
import paddle
from PIL import Image, ImageEnhance
random.seed(0)
THREAD = 8
BUF_SIZE = 1024
TRAIN_LIST = 'data/train.list'
TEST_LIST = 'data/test.list'
INFER_LIST = 'data/test.list'
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
python_ver = sys.version_info
def imageloader(buf):
if isinstance(buf, str):
img = Image.open(StringIO(buf))
else:
img = Image.open(BytesIO(buf))
return img.convert('RGB')
def group_scale(imgs, target_size):
resized_imgs = []
for i in range(len(imgs)):
img = imgs[i]
w, h = img.size
if (w <= h and w == target_size) or (h <= w and h == target_size):
resized_imgs.append(img)
continue
if w < h:
ow = target_size
oh = int(target_size * 4.0 / 3.0)
resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
else:
oh = target_size
ow = int(target_size * 4.0 / 3.0)
resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
return resized_imgs
def group_random_crop(img_group, target_size):
w, h = img_group[0].size
th, tw = target_size, target_size
out_images = []
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
def group_random_flip(img_group):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
return ret
else:
return img_group
def group_center_crop(img_group, target_size):
img_crop = []
for img in img_group:
w, h = img.size
th, tw = target_size, target_size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return img_crop
def video_loader(frames, nsample, mode):
videolen = len(frames)
average_dur = videolen // nsample
imgs = []
for i in range(nsample):
idx = 0
if mode == 'train':
if average_dur >= 1:
idx = random.randint(0, average_dur - 1)
idx += i * average_dur
else:
idx = i
else:
if average_dur >= 1:
idx = (average_dur - 1) // 2
idx += i * average_dur
else:
idx = i
imgbuf = frames[int(idx % videolen)]
img = imageloader(imgbuf)
imgs.append(img)
return imgs
def decode_pickle(sample, mode, seg_num, short_size, target_size):
pickle_path = sample[0]
if python_ver < (3, 0):
data_loaded = pickle.load(open(pickle_path, 'rb'))
else:
data_loaded = pickle.load(open(pickle_path, 'rb'), encoding='bytes')
vid, label, frames = data_loaded
imgs = video_loader(frames, seg_num, mode)
imgs = group_scale(imgs, short_size)
if mode == 'train':
imgs = group_random_crop(imgs, target_size)
imgs = group_random_flip(imgs)
else:
imgs = group_center_crop(imgs, target_size)
np_imgs = (np.array(imgs[0]).astype('float32').transpose(
(2, 0, 1))).reshape(1, 3, 224, 224) / 255
for i in range(len(imgs) - 1):
img = (np.array(imgs[i + 1]).astype('float32').transpose(
(2, 0, 1))).reshape(1, 3, 224, 224) / 255
np_imgs = np.concatenate((np_imgs, img))
imgs = np_imgs
imgs -= img_mean
imgs /= img_std
if mode == 'train' or mode == 'test':
return imgs, label
elif mode == 'infer':
return imgs, vid
def _reader_creator(pickle_list,
mode,
seg_num,
short_size,
target_size,
shuffle=False):
def reader():
with open(pickle_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
pickle_path = line.strip()
yield [pickle_path]
mapper = functools.partial(
decode_pickle,
mode=mode,
seg_num=seg_num,
short_size=short_size,
target_size=target_size)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def train(seg_num):
return _reader_creator(
TRAIN_LIST,
'train',
shuffle=True,
seg_num=seg_num,
short_size=256,
target_size=224)
def test(seg_num):
return _reader_creator(
TEST_LIST,
'test',
shuffle=False,
seg_num=seg_num,
short_size=256,
target_size=224)
def infer(seg_num):
return _reader_creator(
INFER_LIST,
'infer',
shuffle=False,
seg_num=seg_num,
short_size=256,
target_size=224)