forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility.py
executable file
·142 lines (119 loc) · 4.6 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import numpy as np
import paddle.fluid as fluid
import six
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(six.iteritems(vars(args))):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int32")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def get_ctc_feeder_data(data, place, need_label=True):
pixel_tensor = fluid.LoDTensor()
pixel_data = None
pixel_data = np.concatenate(
list(map(lambda x: x[0][np.newaxis, :], data)),
axis=0).astype("float32")
pixel_tensor.set(pixel_data, place)
label_tensor = to_lodtensor(list(map(lambda x: x[1], data)), place)
if need_label:
return {"pixel": pixel_tensor, "label": label_tensor}
else:
return {"pixel": pixel_tensor}
def get_ctc_feeder_for_infer(data, place):
return get_ctc_feeder_data(data, place, need_label=False)
def get_attention_feeder_data(data, place, need_label=True):
pixel_tensor = fluid.LoDTensor()
pixel_data = None
pixel_data = np.concatenate(
list(map(lambda x: x[0][np.newaxis, :], data)),
axis=0).astype("float32")
pixel_tensor.set(pixel_data, place)
label_in_tensor = to_lodtensor(list(map(lambda x: x[1], data)), place)
label_out_tensor = to_lodtensor(list(map(lambda x: x[2], data)), place)
if need_label:
return {
"pixel": pixel_tensor,
"label_in": label_in_tensor,
"label_out": label_out_tensor
}
else:
return {"pixel": pixel_tensor}
def get_attention_feeder_for_infer(data, place):
batch_size = len(data)
init_ids_data = np.array([0 for _ in range(batch_size)], dtype='int64')
init_scores_data = np.array(
[1. for _ in range(batch_size)], dtype='float32')
init_ids_data = init_ids_data.reshape((batch_size, 1))
init_scores_data = init_scores_data.reshape((batch_size, 1))
init_recursive_seq_lens = [1] * batch_size
init_recursive_seq_lens = [init_recursive_seq_lens, init_recursive_seq_lens]
init_ids = fluid.create_lod_tensor(init_ids_data, init_recursive_seq_lens,
place)
init_scores = fluid.create_lod_tensor(init_scores_data,
init_recursive_seq_lens, place)
pixel_tensor = fluid.LoDTensor()
pixel_data = None
pixel_data = np.concatenate(
list(map(lambda x: x[0][np.newaxis, :], data)),
axis=0).astype("float32")
pixel_tensor.set(pixel_data, place)
return {
"pixel": pixel_tensor,
"init_ids": init_ids,
"init_scores": init_scores
}