forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
155 lines (131 loc) · 5.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Trainer for ICNet model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from icnet import icnet
import cityscape
import argparse
import functools
import sys
import os
import time
import paddle.fluid as fluid
import numpy as np
from utils import add_arguments, print_arguments, get_feeder_data
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.initializer import init_on_cpu
if 'ce_mode' in os.environ:
np.random.seed(10)
fluid.default_startup_program().random_seed = 90
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 16, "Minibatch size.")
add_arg('checkpoint_path', str, None, "Checkpoint svae path.")
add_arg('init_model', str, None, "Pretrain model path.")
add_arg('use_gpu', bool, True, "Whether use GPU to train.")
add_arg('random_mirror', bool, True, "Whether prepare by random mirror.")
add_arg('random_scaling', bool, True, "Whether prepare by random scaling.")
# yapf: enable
LAMBDA1 = 0.16
LAMBDA2 = 0.4
LAMBDA3 = 1.0
LEARNING_RATE = 0.003
POWER = 0.9
LOG_PERIOD = 100
CHECKPOINT_PERIOD = 100
TOTAL_STEP = 100
no_grad_set = []
def create_loss(predict, label, mask, num_classes):
predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1])
predict = fluid.layers.reshape(predict, shape=[-1, num_classes])
label = fluid.layers.reshape(label, shape=[-1, 1])
predict = fluid.layers.gather(predict, mask)
label = fluid.layers.gather(label, mask)
label = fluid.layers.cast(label, dtype="int64")
loss = fluid.layers.softmax_with_cross_entropy(predict, label)
no_grad_set.append(label.name)
return fluid.layers.reduce_mean(loss)
def poly_decay():
global_step = _decay_step_counter()
with init_on_cpu():
decayed_lr = LEARNING_RATE * (fluid.layers.pow(
(1 - global_step / TOTAL_STEP), POWER))
return decayed_lr
def train(args):
data_shape = cityscape.train_data_shape()
num_classes = cityscape.num_classes()
# define network
images = fluid.layers.data(name='image', shape=data_shape, dtype='float32')
label_sub1 = fluid.layers.data(name='label_sub1', shape=[1], dtype='int32')
label_sub2 = fluid.layers.data(name='label_sub2', shape=[1], dtype='int32')
label_sub4 = fluid.layers.data(name='label_sub4', shape=[1], dtype='int32')
mask_sub1 = fluid.layers.data(name='mask_sub1', shape=[-1], dtype='int32')
mask_sub2 = fluid.layers.data(name='mask_sub2', shape=[-1], dtype='int32')
mask_sub4 = fluid.layers.data(name='mask_sub4', shape=[-1], dtype='int32')
sub4_out, sub24_out, sub124_out = icnet(
images, num_classes, np.array(data_shape[1:]).astype("float32"))
loss_sub4 = create_loss(sub4_out, label_sub4, mask_sub4, num_classes)
loss_sub24 = create_loss(sub24_out, label_sub2, mask_sub2, num_classes)
loss_sub124 = create_loss(sub124_out, label_sub1, mask_sub1, num_classes)
reduced_loss = LAMBDA1 * loss_sub4 + LAMBDA2 * loss_sub24 + LAMBDA3 * loss_sub124
regularizer = fluid.regularizer.L2Decay(0.0001)
optimizer = fluid.optimizer.Momentum(
learning_rate=poly_decay(), momentum=0.9, regularization=regularizer)
_, params_grads = optimizer.minimize(reduced_loss, no_grad_set=no_grad_set)
# prepare environment
place = fluid.CPUPlace()
if args.use_gpu:
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if args.init_model is not None:
print("load model from: %s" % args.init_model)
def if_exist(var):
return os.path.exists(os.path.join(args.init_model, var.name))
fluid.io.load_vars(exe, args.init_model, predicate=if_exist)
iter_id = 0
t_loss = 0.
sub4_loss = 0.
sub24_loss = 0.
sub124_loss = 0.
train_reader = cityscape.train(
args.batch_size, flip=args.random_mirror, scaling=args.random_scaling)
start_time = time.time()
while True:
# train a pass
for data in train_reader():
if iter_id > TOTAL_STEP:
end_time = time.time()
print("kpis train_duration %f" % (end_time - start_time))
return
iter_id += 1
results = exe.run(
feed=get_feeder_data(data, place),
fetch_list=[reduced_loss, loss_sub4, loss_sub24, loss_sub124])
t_loss += results[0]
sub4_loss += results[1]
sub24_loss += results[2]
sub124_loss += results[3]
# training log
if iter_id % LOG_PERIOD == 0:
print(
"Iter[%d]; train loss: %.3f; sub4_loss: %.3f; sub24_loss: %.3f; sub124_loss: %.3f"
% (iter_id, t_loss / LOG_PERIOD, sub4_loss / LOG_PERIOD,
sub24_loss / LOG_PERIOD, sub124_loss / LOG_PERIOD))
print("kpis train_cost %f" % (t_loss / LOG_PERIOD))
t_loss = 0.
sub4_loss = 0.
sub24_loss = 0.
sub124_loss = 0.
sys.stdout.flush()
if iter_id % CHECKPOINT_PERIOD == 0 and args.checkpoint_path is not None:
dir_name = args.checkpoint_path + "/" + str(iter_id)
fluid.io.save_persistables(exe, dirname=dir_name)
print("Saved checkpoint: %s" % (dir_name))
def main():
args = parser.parse_args()
print_arguments(args)
train(args)
if __name__ == "__main__":
main()