forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
135 lines (120 loc) · 4.04 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""Infer for ICNet model."""
from __future__ import print_function
import cityscape
import argparse
import functools
import sys
import os
import cv2
import paddle.fluid as fluid
import paddle
from icnet import icnet
from utils import add_arguments, print_arguments, get_feeder_data
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.initializer import init_on_cpu
import numpy as np
IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model_path', str, None, "Model path.")
add_arg('images_list', str, None, "List file with images to be infered.")
add_arg('images_path', str, None, "The images path.")
add_arg('out_path', str, "./output", "Output path.")
add_arg('use_gpu', bool, True, "Whether use GPU to test.")
# yapf: enable
data_shape = [3, 1024, 2048]
num_classes = 19
label_colours = [
[128, 64, 128],
[244, 35, 231],
[69, 69, 69]
# 0 = road, 1 = sidewalk, 2 = building
,
[102, 102, 156],
[190, 153, 153],
[153, 153, 153]
# 3 = wall, 4 = fence, 5 = pole
,
[250, 170, 29],
[219, 219, 0],
[106, 142, 35]
# 6 = traffic light, 7 = traffic sign, 8 = vegetation
,
[152, 250, 152],
[69, 129, 180],
[219, 19, 60]
# 9 = terrain, 10 = sky, 11 = person
,
[255, 0, 0],
[0, 0, 142],
[0, 0, 69]
# 12 = rider, 13 = car, 14 = truck
,
[0, 60, 100],
[0, 79, 100],
[0, 0, 230]
# 15 = bus, 16 = train, 17 = motocycle
,
[119, 10, 32]
]
# 18 = bicycle
def color(input):
"""
Convert infered result to color image.
"""
result = []
for i in input.flatten():
result.append(
[label_colours[i][2], label_colours[i][1], label_colours[i][0]])
result = np.array(result).reshape([input.shape[0], input.shape[1], 3])
return result
def infer(args):
data_shape = cityscape.test_data_shape()
num_classes = cityscape.num_classes()
# define network
images = fluid.layers.data(name='image', shape=data_shape, dtype='float32')
_, _, sub124_out = icnet(images, num_classes,
np.array(data_shape[1:]).astype("float32"))
predict = fluid.layers.resize_bilinear(
sub124_out, out_shape=data_shape[1:3])
predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1])
predict = fluid.layers.reshape(predict, shape=[-1, num_classes])
_, predict = fluid.layers.topk(predict, k=1)
predict = fluid.layers.reshape(
predict,
shape=[data_shape[1], data_shape[2], -1]) # batch_size should be 1
inference_program = fluid.default_main_program().clone(for_test=True)
# prepare environment
place = fluid.CPUPlace()
if args.use_gpu:
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
assert os.path.exists(args.model_path)
fluid.io.load_params(exe, args.model_path)
print("loaded model from: %s" % args.model_path)
sys.stdout.flush()
if not os.path.isdir(args.out_path):
os.makedirs(args.out_path)
for line in open(args.images_list):
image_file = args.images_path + "/" + line.strip()
filename = os.path.basename(image_file)
image = paddle.dataset.image.load_image(
image_file, is_color=True).astype("float32")
image -= IMG_MEAN
img = paddle.dataset.image.to_chw(image)[np.newaxis, :]
image_t = fluid.LoDTensor()
image_t.set(img, place)
result = exe.run(inference_program,
feed={"image": image_t},
fetch_list=[predict])
cv2.imwrite(args.out_path + "/" + filename + "_result.png",
color(result[0]))
print("Saved images into: %s" % args.out_path)
def main():
args = parser.parse_args()
print_arguments(args)
infer(args)
if __name__ == "__main__":
main()