forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
238 lines (216 loc) · 9.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import sys
import paddle
import argparse
import functools
import time
import numpy as np
from scipy.misc import imsave
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import data_reader
from utility import add_arguments, print_arguments, ImagePool
from trainer import GATrainer, GBTrainer, DATrainer, DBTrainer
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 1, "Minibatch size.")
add_arg('epoch', int, 2, "The number of epoched to be trained.")
add_arg('output', str, "./output", "The directory the model and the test result to be saved to.")
add_arg('init_model', str, None, "The init model file of directory.")
add_arg('save_checkpoints', bool, True, "Whether to save checkpoints.")
add_arg('run_test', bool, True, "Whether to run test.")
add_arg('use_gpu', bool, True, "Whether to use GPU to train.")
add_arg('profile', bool, False, "Whether to profile.")
add_arg('run_ce', bool, False, "Whether to run for model ce.")
# yapf: enable
def train(args):
max_images_num = data_reader.max_images_num()
shuffle = True
if args.run_ce:
np.random.seed(10)
fluid.default_startup_program().random_seed = 90
max_images_num = 1
shuffle = False
data_shape = [-1] + data_reader.image_shape()
input_A = fluid.layers.data(
name='input_A', shape=data_shape, dtype='float32')
input_B = fluid.layers.data(
name='input_B', shape=data_shape, dtype='float32')
fake_pool_A = fluid.layers.data(
name='fake_pool_A', shape=data_shape, dtype='float32')
fake_pool_B = fluid.layers.data(
name='fake_pool_B', shape=data_shape, dtype='float32')
g_A_trainer = GATrainer(input_A, input_B)
g_B_trainer = GBTrainer(input_A, input_B)
d_A_trainer = DATrainer(input_A, fake_pool_A)
d_B_trainer = DBTrainer(input_B, fake_pool_B)
# prepare environment
place = fluid.CPUPlace()
if args.use_gpu:
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
A_pool = ImagePool()
B_pool = ImagePool()
A_reader = paddle.batch(
data_reader.a_reader(shuffle=shuffle), args.batch_size)()
B_reader = paddle.batch(
data_reader.b_reader(shuffle=shuffle), args.batch_size)()
if not args.run_ce:
A_test_reader = data_reader.a_test_reader()
B_test_reader = data_reader.b_test_reader()
def test(epoch):
out_path = args.output + "/test"
if not os.path.exists(out_path):
os.makedirs(out_path)
i = 0
for data_A, data_B in zip(A_test_reader(), B_test_reader()):
A_name = data_A[1]
B_name = data_B[1]
tensor_A = fluid.LoDTensor()
tensor_B = fluid.LoDTensor()
tensor_A.set(data_A[0], place)
tensor_B.set(data_B[0], place)
fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = exe.run(
g_A_trainer.infer_program,
fetch_list=[
g_A_trainer.fake_A, g_A_trainer.fake_B, g_A_trainer.cyc_A,
g_A_trainer.cyc_B
],
feed={"input_A": tensor_A,
"input_B": tensor_B})
fake_A_temp = np.squeeze(fake_A_temp[0]).transpose([1, 2, 0])
fake_B_temp = np.squeeze(fake_B_temp[0]).transpose([1, 2, 0])
cyc_A_temp = np.squeeze(cyc_A_temp[0]).transpose([1, 2, 0])
cyc_B_temp = np.squeeze(cyc_B_temp[0]).transpose([1, 2, 0])
input_A_temp = np.squeeze(data_A[0]).transpose([1, 2, 0])
input_B_temp = np.squeeze(data_B[0]).transpose([1, 2, 0])
imsave(out_path + "/fakeB_" + str(epoch) + "_" + A_name, (
(fake_B_temp + 1) * 127.5).astype(np.uint8))
imsave(out_path + "/fakeA_" + str(epoch) + "_" + B_name, (
(fake_A_temp + 1) * 127.5).astype(np.uint8))
imsave(out_path + "/cycA_" + str(epoch) + "_" + A_name, (
(cyc_A_temp + 1) * 127.5).astype(np.uint8))
imsave(out_path + "/cycB_" + str(epoch) + "_" + B_name, (
(cyc_B_temp + 1) * 127.5).astype(np.uint8))
imsave(out_path + "/inputA_" + str(epoch) + "_" + A_name, (
(input_A_temp + 1) * 127.5).astype(np.uint8))
imsave(out_path + "/inputB_" + str(epoch) + "_" + B_name, (
(input_B_temp + 1) * 127.5).astype(np.uint8))
i += 1
def checkpoints(epoch):
out_path = args.output + "/checkpoints/" + str(epoch)
if not os.path.exists(out_path):
os.makedirs(out_path)
fluid.io.save_persistables(
exe, out_path + "/g_a", main_program=g_A_trainer.program)
fluid.io.save_persistables(
exe, out_path + "/g_b", main_program=g_B_trainer.program)
fluid.io.save_persistables(
exe, out_path + "/d_a", main_program=d_A_trainer.program)
fluid.io.save_persistables(
exe, out_path + "/d_b", main_program=d_B_trainer.program)
print("saved checkpoint to {}".format(out_path))
sys.stdout.flush()
def init_model():
assert os.path.exists(
args.init_model), "[%s] cann't be found." % args.init_mode
fluid.io.load_persistables(
exe, args.init_model + "/g_a", main_program=g_A_trainer.program)
fluid.io.load_persistables(
exe, args.init_model + "/g_b", main_program=g_B_trainer.program)
fluid.io.load_persistables(
exe, args.init_model + "/d_a", main_program=d_A_trainer.program)
fluid.io.load_persistables(
exe, args.init_model + "/d_b", main_program=d_B_trainer.program)
print("Load model from {}".format(args.init_model))
if args.init_model:
init_model()
losses = [[], []]
t_time = 0
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = False
build_strategy.memory_optimize = False
g_A_trainer_program = fluid.CompiledProgram(
g_A_trainer.program).with_data_parallel(
loss_name=g_A_trainer.g_loss_A.name, build_strategy=build_strategy)
g_B_trainer_program = fluid.CompiledProgram(
g_B_trainer.program).with_data_parallel(
loss_name=g_B_trainer.g_loss_B.name, build_strategy=build_strategy)
d_B_trainer_program = fluid.CompiledProgram(
d_B_trainer.program).with_data_parallel(
loss_name=d_B_trainer.d_loss_B.name, build_strategy=build_strategy)
d_A_trainer_program = fluid.CompiledProgram(
d_A_trainer.program).with_data_parallel(
loss_name=d_A_trainer.d_loss_A.name, build_strategy=build_strategy)
for epoch in range(args.epoch):
batch_id = 0
for i in range(max_images_num):
data_A = next(A_reader)
data_B = next(B_reader)
tensor_A = fluid.LoDTensor()
tensor_B = fluid.LoDTensor()
tensor_A.set(data_A, place)
tensor_B.set(data_B, place)
s_time = time.time()
# optimize the g_A network
g_A_loss, fake_B_tmp = exe.run(
g_A_trainer_program,
fetch_list=[g_A_trainer.g_loss_A, g_A_trainer.fake_B],
feed={"input_A": tensor_A,
"input_B": tensor_B})
fake_pool_B = B_pool.pool_image(fake_B_tmp)
# optimize the d_B network
d_B_loss = exe.run(
d_B_trainer_program,
fetch_list=[d_B_trainer.d_loss_B],
feed={"input_B": tensor_B,
"fake_pool_B": fake_pool_B})[0]
# optimize the g_B network
g_B_loss, fake_A_tmp = exe.run(
g_B_trainer_program,
fetch_list=[g_B_trainer.g_loss_B, g_B_trainer.fake_A],
feed={"input_A": tensor_A,
"input_B": tensor_B})
fake_pool_A = A_pool.pool_image(fake_A_tmp)
# optimize the d_A network
d_A_loss = exe.run(
d_A_trainer_program,
fetch_list=[d_A_trainer.d_loss_A],
feed={"input_A": tensor_A,
"fake_pool_A": fake_pool_A})[0]
batch_time = time.time() - s_time
t_time += batch_time
print(
"epoch{}; batch{}; g_A_loss: {}; d_B_loss: {}; g_B_loss: {}; d_A_loss: {}; "
"Batch_time_cost: {:.2f}".format(epoch, batch_id, g_A_loss[
0], d_B_loss[0], g_B_loss[0], d_A_loss[0], batch_time))
losses[0].append(g_A_loss[0])
losses[1].append(d_A_loss[0])
sys.stdout.flush()
batch_id += 1
if args.run_test and not args.run_ce:
test(epoch)
if args.save_checkpoints and not args.run_ce:
checkpoints(epoch)
if args.run_ce:
print("kpis,g_train_cost,{}".format(np.mean(losses[0])))
print("kpis,d_train_cost,{}".format(np.mean(losses[1])))
print("kpis,duration,{}".format(t_time / args.epoch))
if __name__ == "__main__":
args = parser.parse_args()
print_arguments(args)
if args.profile:
if args.use_gpu:
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
train(args)
else:
with profiler.profiler("CPU", sorted_key='total') as cpuprof:
train(args)
else:
train(args)