-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
482 lines (430 loc) · 23.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import time
from build_model import *
from load_data_path import *
from loss_function import *
from tensorflow.keras.optimizers import *
import matplotlib.pyplot as plt
from random import randint
from sklearn.metrics import accuracy_score
class Relight_cycle:
def __init__(self):
self.generator = build_relight()
self.discriminator = build_discriminator()
self.vsn = build_vsn()
self.opt = Adam(1e-4)
self.train_roots, self.train_id, self.train_light, self.test_roots, self.test_id, self.test_light = load_YaleB()
self.input_image_roots, self.reference_image_roots, self.GT_image_roots, self.id_class \
= set_data_for_cycleGAN(self.train_roots, self.train_light, is_pretrain=False)
self.test_input_image_roots, self.test_reference_image_roots, self.test_GT_image_roots, self.test_id_class \
= set_data_for_cycleGAN(self.test_roots, self.test_light, is_pretrain=False)
self.style_l = style_loss()
def gen_train_step(self, source, reference, target, label, training = True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img)
loss_classify = classify_loss(label, c_gen)
loss_img = img_loss(target, gen_img)
loss_style = self.style_l.predict_loss(reference, gen_img)
loss_adv = adversarial_loss(target=True, pred=v_gen)
loss_g = loss_img + loss_style + loss_adv + loss_classify
if training:
loss_g = loss_img + loss_style + loss_adv + loss_classify
grads = tape.gradient(loss_g, self.generator.trainable_variables)
self.opt.apply_gradients(zip(grads, self.generator.trainable_variables))
else:
loss_g = loss_img + loss_style + loss_adv
return loss_g, loss_adv, loss_img, loss_style, loss_classify
def dis_train_step(self, source, reference, target, label, training = True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img)
v_real, c_real = self.discriminator.call(tf.cast(target, dtype='float32'))
#loss_classify_gen = classify_loss(label, c_gen)
loss_classify_real = classify_loss(label, c_real)
loss_adv_gen = adversarial_loss(target=False, pred=v_gen)
loss_adv_real = adversarial_loss(target=True, pred=v_real)
loss_adv = 0.5 * (loss_adv_gen + loss_adv_real)
loss_d = loss_classify_real + loss_adv
if training:
grads = tape.gradient(loss_d, self.discriminator.trainable_variables)
self.opt.apply_gradients(zip(grads, self.discriminator.trainable_variables))
else:
loss_d = loss_adv
return loss_d, loss_adv, loss_classify_real
def train(self, epochs=50, interval=1, batch_size=17, batch_num=440):
tr_L_G_avg = []
tr_L_G_adv_avg = []
tr_L_G_img_avg = []
tr_L_G_style_avg = []
tr_L_G_cls_avg = []
tr_L_D_avg = []
tr_L_D_adv_avg=[]
tr_L_D_cls_avg = []
te_L_G_avg = []
te_L_D_avg = []
start = time.time()
for epoch in range(epochs):
tr_L_G = []
tr_L_G_adv = []
tr_L_G_img = []
tr_L_G_style = []
tr_L_G_cls = []
tr_L_D = []
tr_L_D_adv = []
tr_L_D_cls = []
te_L_G = []
te_L_D = []
ep_start = time.time()
for b in range(batch_num):
source = load_image(get_batch_data(self.input_image_roots, b, batch_size))
reference = load_image(get_batch_data(self.reference_image_roots, b, batch_size))
target = load_image(get_batch_data(self.GT_image_roots, b, batch_size))
label = get_batch_data(self.id_class, b, batch_size)
b_test = randint(0,80)
test_source = load_image(get_batch_data(self.test_input_image_roots, b_test, batch_size))
test_reference = load_image(get_batch_data(self.test_reference_image_roots, b_test, batch_size))
test_target = load_image(get_batch_data(self.test_GT_image_roots, b_test, batch_size))
test_label = get_batch_data(self.test_id_class, b_test, batch_size)
for i in range(2):
loss_g, loss_adv, loss_img, loss_style, loss_cls_g \
= self.gen_train_step(source, reference, target, label)
loss_g_test, _, _, _, _ = self.gen_train_step(test_source, test_reference, test_target, test_label, training=False)
tr_L_G.append(loss_g)
tr_L_G_adv.append(loss_adv)
tr_L_G_img.append(loss_img)
tr_L_G_style.append(loss_style)
tr_L_G_cls.append(loss_cls_g)
te_L_G.append(loss_g_test)
loss_d, loss_adv_d, loss_cls_d = self.dis_train_step(source, reference, target, label)
loss_d_test, _, _ = self.dis_train_step(test_source, test_reference, test_target, test_label, training=False)
tr_L_D.append(loss_d)
tr_L_D_adv.append(loss_adv_d)
tr_L_D_cls.append(loss_cls_d)
te_L_D.append(loss_d_test)
source, reference, target, label = None, None, None, None
tr_L_G_avg.append(np.mean(tr_L_G))
tr_L_G_adv_avg.append(np.mean(tr_L_G_adv))
tr_L_G_img_avg.append(np.mean(tr_L_G_img))
tr_L_G_style_avg.append(np.mean(tr_L_G_style))
tr_L_G_cls_avg.append(np.mean(tr_L_G_cls))
tr_L_D_avg.append(np.mean(tr_L_D))
tr_L_D_adv_avg.append(np.mean(tr_L_D_adv))
tr_L_D_cls_avg.append(np.mean(tr_L_D_cls))
te_L_G_avg.append(np.mean(te_L_G))
te_L_D_avg.append(np.mean(te_L_D))
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss Gen_adv : {:8.5f}'.format(tr_L_G_adv_avg[-1]))
print('Train Loss Gen_img : {:8.5f}'.format(tr_L_G_img_avg[-1]))
print('Train Loss Gen_style : {:8.5f}'.format(tr_L_G_style_avg[-1]))
print('Train Loss Gen_classify : {:8.5f}'.format(tr_L_G_cls_avg[-1]))
print('Train Loss Generator : {:8.5f}'.format(tr_L_G_avg[-1]))
print('Train Loss Dis_cls : {:8.5f}'.format(tr_L_D_cls_avg[-1]))
print('Train Loss Dis_adv : {:8.5f}'.format(tr_L_D_adv_avg[-1]))
print('Train Loss Discriminator : {:8.5f}'.format(tr_L_D_avg[-1]))
print('Test Loss Generator : {:8.5f}'.format(te_L_G_avg[-1]))
print('Test Loss Discriminator : {:8.5f}'.format(te_L_D_avg[-1]))
self.sample_images(epoch, path = 'picture2/total_train')
if (epoch % interval == 0 or epoch + 1 == epochs) and (te_L_G_avg[-1] <= np.min(te_L_G_avg)):
self.generator.save_weights('weight/generator_weights_{}'.format(epoch+1))
self.discriminator.save_weights('weight/discriminator_weights_{}'.format(epoch+1))
return [tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_img_avg, tr_L_G_style_avg, tr_L_G_cls_avg],\
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg]
def train_vsn_step(self, source, light_label, training=True):
light_label = tf.one_hot(light_label, depth=2)
with tf.GradientTape() as tape:
_, pred = self.vsn(source)
loss_cls = classify_loss(light_label, pred)
acc = accuracy_score(np.argmax(light_label, axis=-1), np.argmax(pred, axis=-1))
if training:
grads = tape.gradient(loss_cls, self.vsn.trainable_variables)
self.opt.apply_gradients(zip(grads, self.vsn.trainable_variables))
return loss_cls, acc
def train_vsn(self, epochs=500, interval=5, batch_size=11, batch_num=32):
tr_L_vsn_avg = []
tr_acc_vsn_avg = []
te_L_vsn_avg = []
te_acc_vsn_avg = []
start = time.time()
for epoch in range(epochs):
ep_start = time.time()
tr_L_vsn = []
tr_acc_vsn = []
train_roots = np.array(self.train_roots)
train_light = np.array(self.train_light)
train_idx = [i for i in range(batch_size*batch_num)]
random.shuffle(train_idx)
for b in range(batch_num):
idx = train_idx[b*batch_size: (b+1)*batch_size]
source = load_image(train_roots[idx])
source = 0.5 * (source + 1)
label = train_light[idx]
loss_vsn, tr_acc = self.train_vsn_step(source, label, training=True)
tr_L_vsn.append(loss_vsn)
tr_acc_vsn.append(tr_acc)
tr_L_vsn_avg.append(np.mean(tr_L_vsn))
tr_acc_vsn_avg.append(np.mean(tr_acc))
test_img = load_image(self.test_roots)
test_img = 0.5 * (test_img + 1)
test_light = self.test_light
loss_cls_test, te_acc = self.train_vsn_step(test_img, test_light, training=False)
te_L_vsn_avg.append(loss_cls_test)
te_acc_vsn_avg.append(te_acc)
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss VSN : {:8.5f}'.format(tr_L_vsn_avg[-1]))
print('Train accuracy : {:8.5f}'.format(tr_acc_vsn_avg[-1]))
print('Test Loss VSN : {:8.5f}'.format(te_L_vsn_avg[-1]))
print('Test accuracy : {:8.5f}'.format(te_acc_vsn_avg[-1]))
if (epoch % interval == 0 or epoch + 1 == epochs) and (te_L_vsn_avg[-1] <= np.min(te_L_vsn_avg)):
self.vsn.save_weights('weight/vsn_weights_{}'.format(epoch + 1))
return tr_L_vsn_avg, tr_acc_vsn_avg, te_L_vsn_avg, te_acc_vsn_avg
def gen_train_step_part2(self, source, reference, target, label, training=True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img_1 = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img_1)
inputs_2 = tf.concat([gen_img_1, source], -1)
gen_img_2 = self.generator.call(inputs_2)
att, _ = self.vsn(source)
att = tf.reduce_mean(att, axis=-1)
att = tf.reshape(att, (att.shape[0], att.shape[1], att.shape[2], 1))
loss_classify = classify_loss(label, c_gen)
loss_img = img_loss(target, gen_img_1)
loss_style = self.style_l.predict_loss(reference, gen_img_1)
loss_adv = adversarial_loss(target=True, pred=v_gen)
loss_psnr = PSNR_loss(source, gen_img_2)
loss_ssim = SSIM_loss(source, gen_img_2)
loss_ssim = tf.reduce_mean(loss_ssim)
loss_ssim_att = SSIM_att_loss(source, gen_img_2, att)
loss_ssim_att = tf.reduce_mean(loss_ssim_att)
loss_cycle = img_loss(source, gen_img_2)
loss_g = loss_adv + loss_classify + 2 * loss_img + loss_style + loss_psnr + 2 * loss_ssim + 4 * loss_ssim_att + 10 * loss_cycle
if training:
grads = tape.gradient(loss_g, self.generator.trainable_variables)
self.opt.apply_gradients(zip(grads, self.generator.trainable_variables))
else:
loss_g = loss_adv + 2 * loss_img + loss_style + loss_psnr + 2 * loss_ssim + 4 * loss_ssim_att + 10 * loss_cycle
return loss_g, loss_adv, loss_classify, 2 * loss_img, loss_style, loss_psnr, 2 * loss_ssim, 4 * loss_ssim_att, 10 * loss_cycle
def train_part2(self, epochs=30, interval=1, batch_size=16, train_num=880):
tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg = [], [], [], [], []
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg = [], [], []
tr_L_G_cycle_avg, tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg = [], [], [], []
te_L_G_avg, te_L_D_avg = [], []
start = time.time()
for epoch in range(epochs):
tr_L_G, tr_L_G_adv, tr_L_G_cls, tr_L_G_img, tr_L_G_style = [], [], [], [], []
tr_L_G_psnr, tr_L_G_ssim, tr_L_G_ssim_att = [], [], []
tr_L_G_cycle, tr_L_D, tr_L_D_adv, tr_L_D_cls = [], [], [], []
te_L_G, te_L_D = [], []
ep_start = time.time()
for b in range(train_num):
source = load_image(get_batch_data(self.input_image_roots, b, batch_size))
reference = load_image(get_batch_data(self.reference_image_roots, b, batch_size))
target = load_image(get_batch_data(self.GT_image_roots, b, batch_size))
label = get_batch_data(self.id_class, b, batch_size)
b_test = randint(0, 80)
test_source = load_image(get_batch_data(self.test_input_image_roots, b_test, batch_size))
test_reference = load_image(get_batch_data(self.test_reference_image_roots, b_test, batch_size))
test_target = load_image(get_batch_data(self.test_GT_image_roots, b_test, batch_size))
test_label = get_batch_data(self.test_id_class, b_test, batch_size)
loss_g, loss_adv_g, loss_cls_g, loss_img, loss_style, loss_psnr, loss_ssim, loss_ssim_att, loss_cycle = \
self.gen_train_step_part2(source, reference, target, label)
loss_g_test, _, _, _, _, _, _, _, _ = self.gen_train_step_part2(test_source, test_reference, test_target, test_label,
training=False)
loss_d, loss_adv_d, loss_cls_d = self.dis_train_step(source, reference, target, label)
loss_d_test, _, _ = self.dis_train_step(test_source, test_reference, test_target, test_label,
training=False)
tr_L_G.append(loss_g)
tr_L_G_adv.append(loss_adv_g)
tr_L_G_cls.append(loss_cls_g)
tr_L_G_img.append(loss_img)
tr_L_G_style.append(loss_style)
tr_L_G_psnr.append(loss_psnr)
tr_L_G_ssim.append(loss_ssim)
tr_L_G_ssim_att.append(loss_ssim_att)
tr_L_G_cycle.append(loss_cycle)
tr_L_D.append(loss_d)
tr_L_D_adv.append(loss_adv_d)
tr_L_D_cls.append(loss_cls_d)
te_L_G.append(loss_g_test)
te_L_D.append(loss_d_test)
tr_L_G_avg.append(np.mean(tr_L_G))
tr_L_G_cls_avg.append(np.mean(tr_L_G_cls))
tr_L_G_img_avg.append(np.mean(tr_L_G_img))
tr_L_G_style_avg.append(np.mean(tr_L_G_style))
tr_L_G_adv_avg.append(np.mean(tr_L_G_adv))
tr_L_G_psnr_avg.append(np.mean(tr_L_G_psnr))
tr_L_G_ssim_avg.append(np.mean(tr_L_G_ssim))
tr_L_G_ssim_att_avg.append(np.mean(tr_L_G_ssim_att))
tr_L_G_cycle_avg.append(np.mean(tr_L_G_cycle))
tr_L_D_avg.append(np.mean(tr_L_D))
tr_L_D_adv_avg.append(np.mean(tr_L_D_adv))
tr_L_D_cls_avg.append(np.mean(tr_L_D_cls))
te_L_G_avg.append(np.mean(te_L_G))
te_L_D_avg.append(np.mean(te_L_D))
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss Generator : {:8.5f}'.format(tr_L_G_avg[-1]))
print('Train Loss Gen_adv : {:8.5f}'.format(tr_L_G_adv_avg[-1]))
print('Train Loss Gen_classify : {:8.5f}'.format(tr_L_G_cls_avg[-1]))
print('Train Loss Gen_img : {:8.5f}'.format(tr_L_G_img_avg[-1]))
print('Train Loss Gen_style : {:8.5f}'.format(tr_L_G_style_avg[-1]))
print('Train Loss Gen_PSNR : {:8.5f}'.format(tr_L_G_psnr_avg[-1]))
print('Train Loss Gen_SSIM : {:8.5f}'.format(tr_L_G_ssim_avg[-1]))
print('Train Loss Gen_SSIM_att : {:8.5f}'.format(tr_L_G_ssim_att_avg[-1]))
print('Train Loss Gen_cycle : {:8.5f}'.format(tr_L_G_cycle_avg[-1]))
print('Train Loss Dis_cls : {:8.5f}'.format(tr_L_D_cls_avg[-1]))
print('Train Loss Dis_adv : {:8.5f}'.format(tr_L_D_adv_avg[-1]))
print('Train Loss Discriminator : {:8.5f}'.format(tr_L_D_avg[-1]))
print('Test Loss Generator : {:8.5f}'.format(te_L_G_avg[-1]))
print('Test Loss Discriminator : {:8.5f}'.format(te_L_D_avg[-1]))
self.sample_images(epoch, path = 'picture2/total_train')
if (epoch % interval == 0 or epoch + 1 == epochs) and (te_L_G_avg[-1] <= np.min(te_L_G_avg)):
self.generator.save_weights('weight2/generator_part2_weights_{}'.format(epoch + 1))
self.discriminator.save_weights('weight2/discriminator_part2_weights_{}'.format(epoch + 1))
return [tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg,
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg, tr_L_G_cycle_avg], \
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg]
def sample_images(self, epoch, path):
source = load_image(get_batch_data(self.input_image_roots, 0, 10))
reference = load_image(get_batch_data(self.reference_image_roots, 0, 10))
gt = load_image(get_batch_data(self.GT_image_roots, 0, 10))
inputs_1 = tf.concat([source, reference], -1)
gen_imgs_1 = self.generator.predict(inputs_1)
inputs_2 = tf.concat([gen_imgs_1, source], -1)
gen_imgs_2 = self.generator.predict(inputs_2)
# Rescale images 0 - 1
source = 0.5 * (source + 1)
reference = 0.5 * (reference + 1)
gt = 0.5 * (gt + 1)
gen_imgs_1 = 0.5 * (gen_imgs_1 + 1)
gen_imgs_2 = 0.5 * (gen_imgs_2 + 1)
r, c = 5, 10
fig, axs = plt.subplots(r, c, sharex='col', sharey='row', figsize=(25, 25))
plt.subplots_adjust(hspace=0.2)
cnt = 0
for j in range(c):
axs[0, j].imshow(source[cnt], cmap='gray')
axs[0, j].axis('off')
axs[1, j].imshow(gen_imgs_2[cnt], cmap='gray')
axs[1, j].axis('off')
axs[2, j].imshow(gen_imgs_1[cnt], cmap='gray')
axs[2, j].axis('off')
axs[3, j].imshow(gt[cnt], cmap='gray')
axs[3, j].axis('off')
axs[4, j].imshow(reference[cnt], cmap='gray')
axs[4, j].axis('off')
cnt += 1
fig.savefig(path +'_{}.png'.format(epoch+1))
plt.close()
if __name__ == '__main__':
print(tf.__version__)
print(tf.test.is_gpu_available())
print(tf.config.list_physical_devices('GPU'))
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
config = ConfigProto()
config.allow_soft_placement = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
relight_cycle = Relight_cycle()
relight_cycle.generator.load_weights('weight/generator_weights_25')
relight_cycle.discriminator.load_weights('weight/discriminator_weights_25')
relight_cycle.vsn.load_weights('weight/vsn_weights_50')
[tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg,
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg, tr_L_G_cycle_avg], \
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg] \
= relight_cycle.train_part2(epochs=50, interval=1)
plt.plot(tr_L_G_avg)
plt.title('Generator total loss')
plt.savefig('picture2/_Generator loss.jpg')
plt.close()
plt.plot(tr_L_G_adv_avg)
plt.plot(tr_L_D_adv_avg)
plt.title('Adversarial loss')
plt.legend(['Generator', 'Discriminator'], loc='upper right')
plt.savefig('picture2/_Adversarial loss.jpg')
plt.close()
plt.plot(tr_L_G_img_avg)
plt.title('Generator Image Loss')
plt.savefig('picture2/_Generator Image loss.jpg')
plt.close()
plt.plot(tr_L_G_style_avg)
plt.title('Generator style Loss')
plt.savefig('picture2/_Generator style loss.jpg')
plt.close()
plt.plot(tr_L_G_cls_avg)
plt.title('Generator Classify Loss')
plt.savefig('picture2/_Generator Classify loss.jpg')
plt.close()
plt.plot(tr_L_G_psnr_avg)
plt.title('Generator PSNR loss')
plt.savefig('picture2/_Generator part2 PSNR loss.jpg')
plt.close()
plt.plot(tr_L_G_ssim_avg)
plt.title('Generator SSIM loss')
plt.savefig('picture2/_Generator part2 SSIM loss.jpg')
plt.close()
plt.plot(tr_L_G_ssim_att_avg)
plt.title('Generator SSIM att loss')
plt.savefig('picture2/_Generator part2 SSIM att loss.jpg')
plt.close()
plt.plot(tr_L_G_cycle_avg)
plt.title('Generator cycle loss')
plt.savefig('picture2/_Generator part2 cycle loss.jpg')
plt.close()
plt.plot(tr_L_D_cls_avg)
plt.title('Discriminator Classify Loss')
plt.savefig('picture2/_Discriminator Classify loss.jpg')
plt.close()
plt.plot(tr_L_D_avg)
plt.title('Discriminator total loss')
plt.savefig('picture2/_Discriminator loss')
plt.close()
plt.plot(te_L_G_avg)
plt.title('Generator test loss')
plt.savefig('picture2/_Generator part2 test loss.jpg')
plt.close()
plt.plot(te_L_D_avg)
plt.title('Discriminator test loss')
plt.savefig('picture2/_Discriminator part2 test loss')
plt.close()
'''
tr_L_vsn_avg, tr_acc_vsn_avg, te_L_vsn_avg, te_acc_vsn_avg = relight_cycle.train_vsn(epochs=50, interval=1)
plt.plot(tr_L_vsn_avg)
plt.title('Train vsn loss')
plt.savefig('picture/_train vsn loss.jpg')
plt.close()
plt.plot(te_L_vsn_avg)
plt.title('Test vsn loss')
plt.savefig('picture/_test vsn loss.jpg')
plt.close()
plt.plot(tr_acc_vsn_avg)
plt.plot(te_acc_vsn_avg)
plt.title('VSN classify accuracy')
plt.legend(['Train', 'Test'])
plt.savefig('picture/_vsn acc.jpg')
plt.close()
'''