-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
113 lines (101 loc) · 3.54 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import cv2
import numpy as np
from random import *
def load_yaleb_train(path):
light_type = os.listdir(path)
light_type.sort()
dataset = []
for light in light_type:
subpath = path + '/' + light
img_name = os.listdir(subpath)
img_name.sort()
for name in img_name:
img = cv2.imread(subpath + '/' + name)
img = cv2.resize(img, (128, 128))
dataset.append(img)
dataset = np.array(dataset).astype('float32')
dataset = dataset/127.5 - 1
return dataset
def load_img_cond1(target_light_type, train=True):
path = '/home/pomelo96/Desktop/datasets/Yaleb/'
if train : path += 'train'
else : path += 'test'
GT = load_light_type(target_light_type, train=train)
reference = GT
light_name = os.listdir(path)
light_name.sort()
dataset = []
for i in range(len(light_name)):
if i != target_light_type:
light = light_name[i]
subpath = path + '/' + light
img_name = os.listdir(subpath)
img_name.sort()
for name in img_name:
img = cv2.imread(subpath + '/' + name)
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, axis=-1)
dataset.append(img)
dataset = np.array(dataset).astype('float32')
dataset = dataset / 127.5 - 1
return dataset, reference, GT
def load_light_type(light_type, train=True):
dataset = []
path = '/home/pomelo96/Desktop/datasets/Yaleb/'
if train: path += 'train'
else : path += 'test'
light_name = os.listdir(path)
light_name.sort()
light_name = light_name[light_type]
subpath = path+ '/'+ light_name
img_name = os.listdir(subpath)
img_name.sort()
for name in img_name:
img = cv2.imread(subpath + '/' +name)
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, axis=-1)
dataset.append(img)
dataset = np.array(dataset).astype('float32')
dataset = dataset / 127.5 - 1
return dataset
def load_id(id, train=True):
dataset = []
path = '/home/pomelo96/Desktop/datasets/Yaleb/'
if train : path += 'train'
else : path += 'test'
light_type = os.listdir(path)
light_type.sort()
dataset = []
for light in light_type:
subpath = path + '/' + light
img_name = os.listdir(subpath)
img_name.sort()
name = img_name[id]
img = cv2.imread(subpath + '/' + name)
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, axis=-1)
dataset.append(img)
dataset = np.array(dataset).astype('float32')
dataset = dataset / 127.5 - 1
return dataset
def load_ck():
dataset = []
path = 'testing_ck_img'
testing_img_name = os.listdir(path)
for name in testing_img_name:
img = cv2.imread(path + '/' + name)
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, axis=-1)
dataset.append(img)
dataset = np.array(dataset).astype('float32')
dataset = dataset / 127.5 - 1
return dataset
def load_referennce_cond7(emo):
dataset = []
if emo == 'natural':
path = '/home/pomelo96/Desktop/datasets/classifier_alignment_CK/train/Natural image'