-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCK_work.py
581 lines (514 loc) · 27.2 KB
/
CK_work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import random
import tensorflow as tf
from train import *
from load_data_path import *
from loss_function import *
def load_CK(train=True):
path = '/home/pomelo96/Desktop/datasets/classifier_alignment_CK'
if train:
path = path + '/' + 'train'
else:
path = path + '/' + 'test'
natural = path + '/' + 'Natural image'
id_name = os.listdir(natural)
id_name.sort()
natural_roots = []
id_label_natural = []
for i in range(len(id_name)): #i = id_label
subpath = natural + '/' + id_name[i]
subfile = os.listdir(subpath)
subfile.sort()
subpath = subpath + '/' + subfile[0]
img_name = os.listdir(subpath) #photo name
img_name.sort()
for name in img_name:
natural_roots.append(subpath + '/' + name)
id_label_natural.append(i)
expression = path + '/' + 'Expression image'
id_name = os.listdir(expression)
id_name.sort()
expression_roots = []
id_label_expression = []
for i in range(len(id_name)): # i = id_label
subpath = expression + '/' + id_name[i]
subfile = os.listdir(subpath)
subfile.sort()
subpath = subpath + '/' + subfile[0]
img_name = os.listdir(subpath) # photo name
img_name.sort()
for name in img_name:
expression_roots.append(subpath + '/' + name)
id_label_expression.append(i)
return natural_roots, id_label_natural, expression_roots, id_label_expression
def cycle_dataset_ck(natural_roots, id_label_natural, expression_roots, id_label_expression, train=True):
source = []
reference = []
target = []
id_class = []
if train:
id_total = 46
else:
id_total = 33
for id in range(id_total):
natural_index = [i for i, x in enumerate(id_label_natural) if x == id]
natural_roots_id = []
for i in natural_index:
natural_roots_id.append(natural_roots[i])
expression_index = [i for i, x in enumerate(id_label_expression) if x == id]
expression_roots_id = []
reference_roots_id = []
for i in range(len(expression_roots)):
if i in expression_index:
expression_roots_id.append(expression_roots[i])
else:
reference_roots_id.append(expression_roots[i])
for source_root in natural_roots_id:
for target_root in expression_roots_id:
source.append(source_root)
reference.append(random.sample(reference_roots_id, 1)[0])
target.append(target_root)
id_class.append(id)
'''
sampling_num = min(len(natural_roots_id), len(expression_roots_id))
source_sample = random.sample(natural_roots_id, sampling_num)
reference_sample = random.sample(reference_roots_id, sampling_num)
target_sample = random.sample(expression_roots_id, sampling_num)
for i in range(sampling_num):
source.append(source_sample[i])
reference.append(reference_sample[i])
target.append(target_sample[i])
id_class.append(id)
'''
temp = list(zip(source, reference, target, id_class))
random.shuffle(temp)
source, reference, target, id_class = zip(*temp)
print(len(source), len(reference), len(target), len(id_class))
return source, reference, target, id_class
class Relight_cycle_ck:
def __init__(self):
self.generator = build_relight()
self.discriminator = build_discriminator()
self.g_opt = Adam(1e-4)
self.d_opt = Adam(2e-4)
self.vsn_opt = Adam(1e-5)
self.train_roots= []
self.style_l = style_loss()
self.vsn = build_vsn()
self.natural_roots, self.id_label_natural,\
self.expression_roots, self.id_label_expression = load_CK(train=True)
self.test_natural_roots, self.test_id_label_natural, \
self.test_expression_roots, self.test_id_label_expression = load_CK(train=False)
self.input_image_roots, self.reference_image_roots, self.GT_image_roots, self.id_class \
= cycle_dataset_ck(self.natural_roots, self.id_label_natural,
self.expression_roots, self.id_label_expression)
self.test_input_image_roots, self.test_reference_image_roots, self.test_GT_image_roots, self.test_id_class \
= cycle_dataset_ck(self.test_natural_roots, self.test_id_label_natural,
self.test_expression_roots, self.test_id_label_expression)
def gen_train_step(self, source, reference, target, label, training = True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img)
loss_classify = classify_loss(label, c_gen)
loss_img = img_loss(target, gen_img)
loss_style = self.style_l.predict_loss(reference, gen_img)
loss_adv = adversarial_loss(target=True, pred=v_gen)
loss_g = loss_adv + loss_classify + loss_img + 60*loss_style
if training:
grads = tape.gradient(loss_g, self.generator.trainable_variables)
self.g_opt.apply_gradients(zip(grads, self.generator.trainable_variables))
return loss_g, loss_adv, loss_img, 60*loss_style, loss_classify
else:
loss_g = loss_img + 60*loss_style + loss_adv
return loss_g
def gen_train_step_part2(self, source, reference, target, label, training=True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img_1 = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img_1)
inputs_2 = tf.concat([gen_img_1, source], -1)
gen_img_2 = self.generator.call(inputs_2)
att, _ = self.vsn(source)
att = tf.reduce_mean(att, axis=-1)
att = tf.reshape(att, (att.shape[0], att.shape[1], att.shape[2], 1))
loss_classify = classify_loss(label, c_gen)
loss_img = img_loss(target, gen_img_1)
loss_style = self.style_l.predict_loss(reference, gen_img_1)
loss_adv = adversarial_loss(target=True, pred=v_gen)
loss_psnr = PSNR_loss(source, gen_img_2)
loss_ssim = SSIM_loss(source, gen_img_2)
loss_ssim = tf.reduce_mean(loss_ssim)
loss_ssim_att = SSIM_att_loss(source, gen_img_2, att)
loss_ssim_att = tf.reduce_mean(loss_ssim_att)
loss_cycle = img_loss(source, gen_img_2)
loss_g = loss_adv + loss_classify + 2 * loss_img + 60 * loss_style + loss_psnr + 2 * loss_ssim + 4 * loss_ssim_att + 10 * loss_cycle
if training:
grads = tape.gradient(loss_g, self.generator.trainable_variables)
self.g_opt.apply_gradients(zip(grads, self.generator.trainable_variables))
return loss_g, loss_adv, loss_classify, 2 * loss_img, 60 * loss_style, loss_psnr, 2 * loss_ssim, 4 * loss_ssim_att, 10 * loss_cycle
else:
loss_g = loss_adv + 2 * loss_img + 60 * loss_style + loss_psnr + 2 * loss_ssim + 4 * loss_ssim_att + 10 * loss_cycle
return loss_g
def dis_train_step(self, source, reference, target, label, training=True):
label = tf.one_hot(label, depth=46)
with tf.GradientTape() as tape:
inputs = tf.concat([source, reference], -1)
gen_img = self.generator.call(inputs)
v_gen, c_gen = self.discriminator.call(gen_img)
v_real, c_real = self.discriminator.call(tf.cast(target, dtype='float32'))
# loss_classify_gen = classify_loss(label, c_gen)
loss_classify_real = classify_loss(label, c_real)
loss_adv_gen = adversarial_loss(target=False, pred=v_gen)
loss_adv_real = adversarial_loss(target=True, pred=v_real)
loss_adv = 0.5 * (loss_adv_gen + loss_adv_real)
loss_d = loss_classify_real + loss_adv
if training:
grads = tape.gradient(loss_d, self.discriminator.trainable_variables)
self.d_opt.apply_gradients(zip(grads, self.discriminator.trainable_variables))
return loss_d, loss_adv, loss_classify_real
else:
loss_d = loss_adv
return loss_d
def train(self, epochs=50, interval=1, batch_size=17, batch_num=197):
tr_L_G_avg = []
tr_L_G_adv_avg = []
tr_L_G_img_avg = []
tr_L_G_style_avg = []
tr_L_G_cls_avg = []
tr_L_D_avg = []
tr_L_D_adv_avg=[]
tr_L_D_cls_avg = []
te_L_G_avg = []
te_L_D_avg = []
start = time.time()
for epoch in range(epochs):
tr_L_G = []
tr_L_G_adv = []
tr_L_G_img = []
tr_L_G_style = []
tr_L_G_cls = []
tr_L_D = []
tr_L_D_adv = []
tr_L_D_cls = []
te_L_G = []
te_L_D = []
ep_start = time.time()
for b in range(batch_num):
source = load_image(get_batch_data(self.input_image_roots, b, batch_size))
reference = load_image(get_batch_data(self.reference_image_roots, b, batch_size))
target = load_image(get_batch_data(self.GT_image_roots, b, batch_size))
label = get_batch_data(self.id_class, b, batch_size)
b_test = randint(0,80)
test_source = load_image(get_batch_data(self.test_input_image_roots, b_test, batch_size))
test_reference = load_image(get_batch_data(self.test_reference_image_roots, b_test, batch_size))
test_target = load_image(get_batch_data(self.test_GT_image_roots, b_test, batch_size))
test_label = get_batch_data(self.test_id_class, b_test, batch_size)
for i in range(2):
loss_g, loss_adv, loss_img, loss_style, loss_cls_g = self.gen_train_step(source, reference, target, label)
loss_g_test = self.gen_train_step(test_source, test_reference, test_target, test_label, training=False)
tr_L_G.append(loss_g)
tr_L_G_adv.append(loss_adv)
tr_L_G_img.append(loss_img)
tr_L_G_style.append(loss_style)
tr_L_G_cls.append(loss_cls_g)
te_L_G.append(loss_g_test)
loss_d, loss_adv_d, loss_cls_d = self.dis_train_step(source, reference, target, label)
loss_d_test = self.dis_train_step(test_source, test_reference, test_target, test_label, training=False)
tr_L_D.append(loss_d)
tr_L_D_adv.append(loss_adv_d)
tr_L_D_cls.append(loss_cls_d)
te_L_D.append(loss_d_test)
source, reference, target, label = None, None, None, None
tr_L_G_avg.append(np.mean(tr_L_G))
tr_L_G_adv_avg.append(np.mean(tr_L_G_adv))
tr_L_G_img_avg.append(np.mean(tr_L_G_img))
tr_L_G_style_avg.append(np.mean(tr_L_G_style))
tr_L_G_cls_avg.append(np.mean(tr_L_G_cls))
tr_L_D_avg.append(np.mean(tr_L_D))
tr_L_D_adv_avg.append(np.mean(tr_L_D_adv))
tr_L_D_cls_avg.append(np.mean(tr_L_D_cls))
te_L_G_avg.append(np.mean(te_L_G))
te_L_D_avg.append(np.mean(te_L_D))
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss Gen_adv : {:8.5f}'.format(tr_L_G_adv_avg[-1]))
print('Train Loss Gen_img : {:8.5f}'.format(tr_L_G_img_avg[-1]))
print('Train Loss Gen_style : {:8.5f}'.format(tr_L_G_style_avg[-1]))
print('Train Loss Gen_classify : {:8.5f}'.format(tr_L_G_cls_avg[-1]))
print('Train Loss Generator : {:8.5f}'.format(tr_L_G_avg[-1]))
print('Train Loss Dis_cls : {:8.5f}'.format(tr_L_D_cls_avg[-1]))
print('Train Loss Dis_adv : {:8.5f}'.format(tr_L_D_adv_avg[-1]))
print('Train Loss Discriminator : {:8.5f}'.format(tr_L_D_avg[-1]))
print('Test Loss Generator : {:8.5f}'.format(te_L_G_avg[-1]))
print('Test Loss Discriminator : {:8.5f}'.format(te_L_D_avg[-1]))
self.sample_images(epoch, path = 'picture_ck/1_')
if (epoch % interval == 0 or epoch + 1 == epochs) and (te_L_G_avg[-1] <= np.min(te_L_G_avg)):
self.generator.save_weights('weight_ck/ck_generator_weights_{}'.format(epoch+1))
self.discriminator.save_weights('weight_ck/ck_discriminator_weights_{}'.format(epoch+1))
return [tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_img_avg, tr_L_G_style_avg, tr_L_G_cls_avg],\
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg]
def train_part2(self, epochs=30, interval=1, batch_size=17, train_num=197):
tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg = [], [], [], [], []
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg = [], [], []
tr_L_G_cycle_avg, tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg = [], [], [], []
te_L_G_avg, te_L_D_avg = [], []
start = time.time()
for epoch in range(epochs):
tr_L_G, tr_L_G_adv, tr_L_G_cls, tr_L_G_img, tr_L_G_style = [], [], [], [], []
tr_L_G_psnr, tr_L_G_ssim, tr_L_G_ssim_att = [], [], []
tr_L_G_cycle, tr_L_D, tr_L_D_adv, tr_L_D_cls = [], [], [], []
te_L_G, te_L_D = [], []
ep_start = time.time()
for b in range(train_num):
source = load_image(get_batch_data(self.input_image_roots, b, batch_size))
reference = load_image(get_batch_data(self.reference_image_roots, b, batch_size))
target = load_image(get_batch_data(self.GT_image_roots, b, batch_size))
label = get_batch_data(self.id_class, b, batch_size)
b_test = randint(0, 80)
test_source = load_image(get_batch_data(self.test_input_image_roots, b_test, batch_size))
test_reference = load_image(get_batch_data(self.test_reference_image_roots, b_test, batch_size))
test_target = load_image(get_batch_data(self.test_GT_image_roots, b_test, batch_size))
test_label = get_batch_data(self.test_id_class, b_test, batch_size)
loss_g, loss_adv_g, loss_cls_g, loss_img, loss_style, loss_psnr, loss_ssim, loss_ssim_att, loss_cycle = \
self.gen_train_step_part2(source, reference, target, label)
loss_g_test = self.gen_train_step_part2(test_source, test_reference, test_target, test_label, training=False)
loss_d, loss_adv_d, loss_cls_d = self.dis_train_step(source, reference, target, label)
loss_d_test = self.dis_train_step(test_source, test_reference, test_target, test_label, training=False)
tr_L_G.append(loss_g)
tr_L_G_adv.append(loss_adv_g)
tr_L_G_cls.append(loss_cls_g)
tr_L_G_img.append(loss_img)
tr_L_G_style.append(loss_style)
tr_L_G_psnr.append(loss_psnr)
tr_L_G_ssim.append(loss_ssim)
tr_L_G_ssim_att.append(loss_ssim_att)
tr_L_G_cycle.append(loss_cycle)
tr_L_D.append(loss_d)
tr_L_D_adv.append(loss_adv_d)
tr_L_D_cls.append(loss_cls_d)
te_L_G.append(loss_g_test)
te_L_D.append(loss_d_test)
tr_L_G_avg.append(np.mean(tr_L_G))
tr_L_G_cls_avg.append(np.mean(tr_L_G_cls))
tr_L_G_img_avg.append(np.mean(tr_L_G_img))
tr_L_G_style_avg.append(np.mean(tr_L_G_style))
tr_L_G_adv_avg.append(np.mean(tr_L_G_adv))
tr_L_G_psnr_avg.append(np.mean(tr_L_G_psnr))
tr_L_G_ssim_avg.append(np.mean(tr_L_G_ssim))
tr_L_G_ssim_att_avg.append(np.mean(tr_L_G_ssim_att))
tr_L_G_cycle_avg.append(np.mean(tr_L_G_cycle))
tr_L_D_avg.append(np.mean(tr_L_D))
tr_L_D_adv_avg.append(np.mean(tr_L_D_adv))
tr_L_D_cls_avg.append(np.mean(tr_L_D_cls))
te_L_G_avg.append(np.mean(te_L_G))
te_L_D_avg.append(np.mean(te_L_D))
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss Generator : {:8.5f}'.format(tr_L_G_avg[-1]))
print('Train Loss Gen_adv : {:8.5f}'.format(tr_L_G_adv_avg[-1]))
print('Train Loss Gen_classify : {:8.5f}'.format(tr_L_G_cls_avg[-1]))
print('Train Loss Gen_img : {:8.5f}'.format(tr_L_G_img_avg[-1]))
print('Train Loss Gen_style : {:8.5f}'.format(tr_L_G_style_avg[-1]))
print('Train Loss Gen_PSNR : {:8.5f}'.format(tr_L_G_psnr_avg[-1]))
print('Train Loss Gen_SSIM : {:8.5f}'.format(tr_L_G_ssim_avg[-1]))
print('Train Loss Gen_SSIM_att : {:8.5f}'.format(tr_L_G_ssim_att_avg[-1]))
print('Train Loss Gen_cycle : {:8.5f}'.format(tr_L_G_cycle_avg[-1]))
print('Train Loss Dis_cls : {:8.5f}'.format(tr_L_D_cls_avg[-1]))
print('Train Loss Dis_adv : {:8.5f}'.format(tr_L_D_adv_avg[-1]))
print('Train Loss Discriminator : {:8.5f}'.format(tr_L_D_avg[-1]))
print('Test Loss Generator : {:8.5f}'.format(te_L_G_avg[-1]))
print('Test Loss Discriminator : {:8.5f}'.format(te_L_D_avg[-1]))
self.sample_images(epoch, path='picture_ck/2_')
if (epoch % interval == 0 or epoch + 1 == epochs) and (te_L_G_avg[-1] <= np.min(te_L_G_avg)):
self.generator.save_weights('weight_ck/ck_generator_part2_weights_{}'.format(epoch + 1))
self.discriminator.save_weights('weight_ck/ck_discriminator_part2_weights_{}'.format(epoch + 1))
return [tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg,
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg, tr_L_G_cycle_avg], \
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg]
def train_vsn_step(self, source, label, training=True):
label = tf.one_hot(label, depth=2)
with tf.GradientTape() as tape:
_, pred = self.vsn(source)
loss_cls = classify_loss(label, pred)
acc = accuracy_score(np.argmax(label, axis=-1), np.argmax(pred, axis=-1))
grads = tape.gradient(loss_cls, self.vsn.trainable_variables)
self.vsn_opt.apply_gradients(zip(grads, self.vsn.trainable_variables))
return loss_cls, acc
def train_vsn(self, epochs=500, interval=5, batch_size=32, batch_num=26):
tr_L_vsn_avg = []
tr_acc_vsn_avg = []
start = time.time()
[[self.train_roots.append(i) for i in j] for j in [self.natural_roots, self.expression_roots]]
train_roots = np.array(self.train_roots)
train_label = np.array([0] * len(self.natural_roots) + [1] * len(self.expression_roots))
for epoch in range(epochs):
ep_start = time.time()
tr_L_vsn = []
tr_acc_vsn = []
train_idx = [i for i in range(batch_size*batch_num)]
random.shuffle(train_idx)
for b in range(batch_num):
idx = train_idx[b*batch_size: (b+1)*batch_size]
source = load_image(train_roots[idx])
source = 0.5 * (source + 1)
label = train_label[idx]
loss_vsn, tr_acc = self.train_vsn_step(source, label, training=True)
tr_L_vsn.append(loss_vsn)
tr_acc_vsn.append(tr_acc)
tr_L_vsn_avg.append(np.mean(tr_L_vsn))
tr_acc_vsn_avg.append(np.mean(tr_acc))
t_pass = time.time() - start
m_pass, s_pass = divmod(t_pass, 60)
h_pass, m_pass = divmod(m_pass, 60)
print('\nTime for pass {:<4d} : {:<2d} hour {:<3d} min {:<4.3f} sec'.format(epoch + 1, int(h_pass),
int(m_pass), s_pass))
print('Time for epoch {:<4d} : {:6.3f} sec'.format(epoch + 1, time.time() - ep_start))
print('Train Loss VSN : {:8.5f}'.format(tr_L_vsn_avg[-1]))
print('Train accuracy : {:8.5f}'.format(tr_acc_vsn_avg[-1]))
if (epoch % interval == 0 or epoch + 1 == epochs) and (tr_L_vsn_avg[-1] <= np.min(tr_L_vsn_avg)):
self.vsn.save_weights('weight_ck/vsn_weights_{}'.format(epoch + 1))
return tr_L_vsn_avg, tr_acc_vsn_avg
def sample_images(self, epoch, path):
source = load_image(get_batch_data(self.input_image_roots, 0, 10))
reference = load_image(get_batch_data(self.reference_image_roots, 0, 10))
gt = load_image(get_batch_data(self.GT_image_roots, 0, 10))
inputs_1 = tf.concat([source, reference], -1)
gen_imgs_1 = self.generator.predict(inputs_1)
inputs_2 = tf.concat([gen_imgs_1, source], -1)
gen_imgs_2 = self.generator.predict(inputs_2)
# Rescale images 0 - 1
source = 0.5 * (source + 1)
reference = 0.5 * (reference + 1)
gt = 0.5 * (gt + 1)
gen_imgs_1 = 0.5 * (gen_imgs_1 + 1)
gen_imgs_2 = 0.5 * (gen_imgs_2 + 1)
r, c = 5, 10
fig, axs = plt.subplots(r, c, sharex='col', sharey='row', figsize=(25, 25))
plt.subplots_adjust(hspace=0.2)
cnt = 0
for j in range(c):
axs[0, j].imshow(source[cnt], cmap='gray')
axs[0, j].axis('off')
axs[1, j].imshow(gen_imgs_2[cnt], cmap='gray')
axs[1, j].axis('off')
axs[2, j].imshow(gen_imgs_1[cnt], cmap='gray')
axs[2, j].axis('off')
axs[3, j].imshow(gt[cnt], cmap='gray')
axs[3, j].axis('off')
axs[4, j].imshow(reference[cnt], cmap='gray')
axs[4, j].axis('off')
cnt += 1
fig.savefig(path +'ck_{}.png'.format(epoch+1))
plt.close()
if __name__ == '__main__':
print(tf.__version__)
print(tf.test.is_gpu_available())
print(tf.config.list_physical_devices('GPU'))
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
config = ConfigProto()
config.allow_soft_placement = True
config.gpu_options.per_process_gpu_memory_fraction = 0.9
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
relight_cycle = Relight_cycle_ck()
pretrain = False
train_part = 'full'
#relight_cycle.generator.load_weights('weight/ck_pretrain_generator_weights_15')
#relight_cycle.discriminator.load_weights('weight/ck_pretrain_discriminator_weights_15')
if pretrain:
relight_cycle.input_image_roots = relight_cycle.GT_image_roots
relight_cycle.test_input_image_roots = relight_cycle.test_GT_image_roots
if train_part == 'half':
relight_cycle.generator.load_weights('weight_ck/ck_pretrain_generator_weights_9')
relight_cycle.discriminator.load_weights('weight_ck/ck_pretrain_discriminator_weights_9')
[tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_img_avg, tr_L_G_style_avg, tr_L_G_cls_avg], \
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg] \
= relight_cycle.train(epochs=30, interval=1)
elif train_part == 'full':
relight_cycle.generator.load_weights('weight_ck/ck_generator_weights_4')
relight_cycle.discriminator.load_weights('weight_ck/ck_discriminator_weights_4')
relight_cycle.vsn.load_weights('weight_ck/vsn_weights_191')
[tr_L_G_avg, tr_L_G_adv_avg, tr_L_G_cls_avg, tr_L_G_img_avg, tr_L_G_style_avg,
tr_L_G_psnr_avg, tr_L_G_ssim_avg, tr_L_G_ssim_att_avg, tr_L_G_cycle_avg], \
[tr_L_D_avg, tr_L_D_adv_avg, tr_L_D_cls_avg], [te_L_G_avg, te_L_D_avg] \
= relight_cycle.train_part2(epochs=50, interval=1)
plt.plot(tr_L_G_psnr_avg)
plt.title('Generator PSNR loss')
plt.savefig('picture_ck/_ck_part2_Generator part2 PSNR loss.jpg')
plt.close()
plt.plot(tr_L_G_ssim_avg)
plt.title('Generator SSIM loss')
plt.savefig('picture_ck/_ck_part2_Generator part2 SSIM loss.jpg')
plt.close()
plt.plot(tr_L_G_ssim_att_avg)
plt.title('Generator SSIM att loss')
plt.savefig('picture_ck/_ck_part2_Generator part2 SSIM att loss.jpg')
plt.close()
plt.plot(tr_L_G_cycle_avg)
plt.title('Generator cycle loss')
plt.savefig('picture_ck/_ck_part2_Generator part2 cycle loss.jpg')
plt.close()
plt.plot(tr_L_G_avg)
plt.title('Generator total loss')
plt.savefig('picture_ck/_ck_part2_Generator loss.jpg')
plt.close()
plt.plot(tr_L_G_adv_avg)
plt.plot(tr_L_D_adv_avg)
plt.title('Adversarial loss')
plt.legend(['Generator', 'Discriminator'], loc='upper right')
plt.savefig('picture_ck/_ck_part2_Adversarial loss.jpg')
plt.close()
plt.plot(tr_L_G_img_avg)
plt.title('Generator Image Loss')
plt.savefig('picture_ck/_ck_part2_Generator Image loss.jpg')
plt.close()
plt.plot(tr_L_G_style_avg)
plt.title('Generator style Loss')
plt.savefig('picture_ck/_ck_part2_Generator style loss.jpg')
plt.close()
plt.plot(tr_L_G_cls_avg)
plt.title('Generator Classify Loss')
plt.savefig('picture_ck/_ck_part2_Generator Classify loss.jpg')
plt.close()
plt.plot(tr_L_D_cls_avg)
plt.title('Discriminator Classify Loss')
plt.savefig('picture_ck/_ck_part2_Discriminator Classify loss.jpg')
plt.close()
plt.plot(tr_L_D_avg)
plt.title('Discriminator total loss')
plt.savefig('picture_ck/_ck_part2_Discriminator loss')
plt.close()
plt.plot(te_L_G_avg)
plt.title('Generator test loss')
plt.savefig('picture_ck/_ck_part2_Generator test loss.jpg')
plt.close()
plt.plot(te_L_D_avg)
plt.title('Discriminator test loss')
plt.savefig('picture_ck/_ck_part2_Discriminator test loss')
plt.close()
'''
relight_cycle = Relight_cycle_ck()
tr_L_vsn_avg, tr_acc_vsn_avg = relight_cycle.train_vsn(epochs=200)
plt.plot(tr_L_vsn_avg)
plt.title('VSN loss')
plt.savefig('picture_ck/ck VSN loss.jpg')
plt.close()
plt.plot(tr_acc_vsn_avg)
plt.title('VSN accuracy')
plt.savefig('picture_ck/ck VSN accuracy')
plt.close()
'''