-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_2_paths.py
84 lines (67 loc) · 3.03 KB
/
image_2_paths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import time
import cv2 as cv
import numpy as np
from skimage.morphology import skeletonize
from path_processor import PathProcessor
class I2P:
def __init__(self, image_path="images/dog2.png", drawing_area=(1, 400, 1, 400),log=True):
self.image_path = image_path
self.log = log
image = cv.imread(image_path, cv.IMREAD_GRAYSCALE)
blurred = cv.GaussianBlur(image, (3, 3), 0)
# cv.imshow('grey', blurred)
# cv.waitKey()
_, binary = cv.threshold(blurred, 125, 255, cv.THRESH_BINARY_INV)
# kernel = np.ones((3,3), np.uint8)
# binary = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
# cv.imshow('binary', binary)
# cv.waitKey()
# binary_normalized = binary / 255
# binary_image = binary_normalized > 0
skeleton = skeletonize(binary)
skeleton_image = (skeleton * 255).astype(np.uint8)
# cv.imshow('skeleton', skeleton_image)
# cv.waitKey()
contours, _ = cv.findContours(
skeleton_image,
cv.RETR_LIST,
cv.CHAIN_APPROX_SIMPLE
)
paths = []
for contour in contours:
# Convert each contour to a list of [x,y] coordinates
path = contour.squeeze().tolist()
# Handle single points or lines
if isinstance(path[0], (int, float)):
path = [path]
print(len(path))
paths.append(path)
# # [[[639, 714], ..., [534, 119]]]
# Get image dimensions
image_height, image_width = image.shape[:2]
pp = PathProcessor(
paths,
drawing_area,
image_dimensions=(image_width, image_height),
z_height_pen_down=0.65,
z_height_pen_up=-20,
distance_mm=3.0
)
self.original_paths, self.reduced_paths = pp.process_paths()
# Filter out paths with length less than XX
self.reduced_paths = [path for path in self.reduced_paths if len(path) >= 4]
if self.log:
print(f"Original Path Count: {len(self.original_paths)}")
print(f"Reduced Path Count: {len(self.reduced_paths)}")
original_points = sum(len(path) for path in self.original_paths)
reduced_points = sum(len(path) for path in self.reduced_paths)
print(f"Original paths total points: {original_points}")
print(f"Reduced paths total points: {reduced_points}")
print(f"Points reduction: {(original_points - reduced_points) / original_points * 100:.1f}%")
print(f"Original paths type: {type(self.original_paths)}")
print(f"Original paths[0] type: {type(self.original_paths[0])}")
print(f"Original paths[0][0] type: {type(self.original_paths[0][0])}")
print(f"Reduced paths type: {type(self.reduced_paths)}")
print(f"Reduced paths[0] type: {type(self.reduced_paths[0])}")
print(f"Reduced paths[0][0] type: {type(self.reduced_paths[0][0])}")