diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb index a6c64554..86bad821 100644 --- a/your-code/pandas_1.ipynb +++ b/your-code/pandas_1.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -44,11 +44,30 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 5.7\n", + "1 75.2\n", + "2 74.4\n", + "3 84.0\n", + "4 66.5\n", + "5 66.3\n", + "6 55.8\n", + "7 75.7\n", + "8 29.1\n", + "9 43.7\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "series = pd.Series(lst)\n", + "print(series)" ] }, { @@ -62,11 +81,20 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "74.4\n" + ] + } + ], "source": [ - "# your code here" + "third_value = series[2]\n", + "print(third_value)" ] }, { @@ -78,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -96,11 +124,30 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n", + "5 49.0 69.0 0.1 31.8 89.1\n", + "6 23.3 40.7 95.0 83.8 26.9\n", + "7 27.6 26.4 53.8 88.8 68.5\n", + "8 96.6 96.4 53.4 72.4 50.1\n", + "9 73.7 39.0 43.2 81.6 34.7\n" + ] + } + ], + "source": [ + "df = pd.DataFrame(b)\n", + "print(df)" ] }, { @@ -112,7 +159,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -130,11 +177,27 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " score_1 score_2 score_3 score_4 score_5\n", + "0 53.1 95.0 67.5 35.0 78.4\n", + "1 61.3 40.8 30.8 37.8 87.6\n", + "2 20.6 73.2 44.2 14.6 91.8\n", + "3 57.4 0.1 96.1 4.2 69.5\n", + "4 83.6 20.5 85.4 22.8 35.9\n" + ] + } + ], + "source": [ + "b_names = [\"score_1\", \"score_2\", \"score_3\", \"score_4\", \"score_5\"]\n", + "\n", + "df.columns = b_names\n", + "print(df.head())" ] }, { @@ -146,11 +209,25 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " score_1 score_3 score_5\n", + "0 53.1 67.5 78.4\n", + "1 61.3 30.8 87.6\n", + "2 20.6 44.2 91.8\n", + "3 57.4 96.1 69.5\n", + "4 83.6 85.4 35.9\n" + ] + } + ], "source": [ - "# your code here" + "subset_df = df[[\"score_1\", \"score_3\", \"score_5\"]]\n", + "print(subset_df.head())" ] }, { @@ -162,11 +239,20 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56.95000000000001\n" + ] + } + ], "source": [ - "# your code here" + "avg_score3 = df[\"score_3\"].mean()\n", + "print(avg_score3)" ] }, { @@ -178,11 +264,20 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "88.8\n" + ] + } + ], "source": [ - "# your code here" + "max_score4 = df[\"score_4\"].max()\n", + "print(max_score4)" ] }, { @@ -194,11 +289,20 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40.75\n" + ] + } + ], "source": [ - "# your code here" + "median_score2 = df[\"score_2\"].median()\n", + "print(median_score2)" ] }, { @@ -210,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -231,11 +335,30 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Description Quantity UnitPrice Revenue\n", + "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n", + "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n", + "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n", + "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n", + "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n", + "5 POPCORN HOLDER 7 0.85 5.95\n", + "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n", + "7 PARTY BUNTING 4 4.95 19.80\n", + "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n", + "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00\n" + ] + } + ], + "source": [ + "orders_df = pd.DataFrame(orders)\n", + "print(orders_df)" ] }, { @@ -247,11 +370,24 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total Quantity Ordered: 2978\n", + "Total Revenue Generated: 637.0\n" + ] + } + ], + "source": [ + "total_quantity = orders_df[\"Quantity\"].sum()\n", + "total_revenue = orders_df[\"Revenue\"].sum()\n", + "\n", + "print(\"Total Quantity Ordered:\", total_quantity)\n", + "print(\"Total Revenue Generated:\", total_revenue)" ] }, { @@ -263,11 +399,28 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Most Expensive Item Price 11.95\n", + "Least Expensive Item Price 0.18\n", + "Price Difference 11.77\n" + ] + } + ], + "source": [ + "max_price = orders_df[\"UnitPrice\"].max()\n", + "min_price = orders_df[\"UnitPrice\"].min()\n", + "\n", + "price_difference = max_price - min_price\n", + "\n", + "print(\"Most Expensive Item Price\", max_price)\n", + "print(\"Least Expensive Item Price\", min_price)\n", + "print(\"Price Difference\", price_difference)" ] }, { @@ -279,12 +432,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "# Run this code:\n", - "admissions = pd.read_csv('../Admission_Predict.csv')" + "admissions = pd.read_csv(r'C:\\Users\\Timoteo\\OneDrive\\Documents\\Iron_Hack\\Week_2\\Labs\\D2\\lab-pandas-en\\Admission_Predict.csv')" ] }, { @@ -296,11 +449,129 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Serial No.GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchChance of Admit
0133711844.54.59.6510.92
1231610433.03.58.0010.72
2332211033.52.58.6710.80
3431410322.03.08.2100.65
4533011554.53.09.3410.90
\n", + "
" + ], + "text/plain": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "0 1 337 118 4 4.5 4.5 9.65 \n", + "1 2 316 104 3 3.0 3.5 8.00 \n", + "2 3 322 110 3 3.5 2.5 8.67 \n", + "3 4 314 103 2 2.0 3.0 8.21 \n", + "4 5 330 115 5 4.5 3.0 9.34 \n", + "\n", + " Research Chance of Admit \n", + "0 1 0.92 \n", + "1 1 0.72 \n", + "2 1 0.80 \n", + "3 0 0.65 \n", + "4 1 0.90 " + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions.head()" ] }, { @@ -312,11 +583,28 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Serial No. 0\n", + "GRE Score 0\n", + "TOEFL Score 0\n", + "University Rating 0\n", + "SOP 0\n", + "LOR 0\n", + "CGPA 0\n", + "Research 0\n", + "Chance of Admit 0\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "print(admissions.isnull().sum())" ] }, { @@ -328,11 +616,137 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchChance of Admit
Serial No.
133711844.54.59.6510.92
231610433.03.58.0010.72
332211033.52.58.6710.80
431410322.03.08.2100.65
533011554.53.09.3410.90
\n", + "
" + ], + "text/plain": [ + " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "Serial No. \n", + "1 337 118 4 4.5 4.5 9.65 \n", + "2 316 104 3 3.0 3.5 8.00 \n", + "3 322 110 3 3.5 2.5 8.67 \n", + "4 314 103 2 2.0 3.0 8.21 \n", + "5 330 115 5 4.5 3.0 9.34 \n", + "\n", + " Research Chance of Admit \n", + "Serial No. \n", + "1 1 0.92 \n", + "2 1 0.72 \n", + "3 1 0.80 \n", + "4 0 0.65 \n", + "5 1 0.90 " + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "admissions = admissions.set_index(\"Serial No.\")\n", + "admissions.head()" ] }, { @@ -351,13 +765,24 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 59, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "101\n" + ] + } + ], "source": [ - "# your code here" + "condition = (admissions[\"CGPA\"] > 9) & (admissions[\"Research\"] == 1)\n", + "high_cgpa = condition.sum()\n", + "print(high_cgpa)\n", + "\n" ] }, { @@ -369,17 +794,48 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Chance of Admit for CGPA > 9 and SOP < 3.5: 0.8019999999999999\n" + ] + } + ], + "source": [ + "# Filter rows based on conditions\n", + "new_condition = (admissions[\"CGPA\"] > 9) & (admissions[\"SOP\"] < 3.5)\n", + "\n", + "# Apply condition to the DataFrame, not to the boolean Series\n", + "mean_chance = admissions.loc[new_condition, \"Chance of Admit \"].mean()\n", + "\n", + "print(\"Mean Chance of Admit for CGPA > 9 and SOP < 3.5:\", mean_chance)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research', 'Chance of Admit ']\n" + ] + } + ], "source": [ - "# your code here" + "print(admissions.columns.tolist())" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "base", "language": "python", "name": "python3" }, @@ -393,7 +849,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.13.5" }, "toc": { "base_numbering": "",