diff --git a/your-code/pandas_1.ipynb b/your-code/pandas_1.ipynb
index a6c64554..86bad821 100644
--- a/your-code/pandas_1.ipynb
+++ b/your-code/pandas_1.ipynb
@@ -18,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@@ -35,7 +35,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
@@ -44,11 +44,30 @@
},
{
"cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 5.7\n",
+ "1 75.2\n",
+ "2 74.4\n",
+ "3 84.0\n",
+ "4 66.5\n",
+ "5 66.3\n",
+ "6 55.8\n",
+ "7 75.7\n",
+ "8 29.1\n",
+ "9 43.7\n",
+ "dtype: float64\n"
+ ]
+ }
+ ],
+ "source": [
+ "series = pd.Series(lst)\n",
+ "print(series)"
]
},
{
@@ -62,11 +81,20 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 25,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "74.4\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "third_value = series[2]\n",
+ "print(third_value)"
]
},
{
@@ -78,7 +106,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
@@ -96,11 +124,30 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " 0 1 2 3 4\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n",
+ "5 49.0 69.0 0.1 31.8 89.1\n",
+ "6 23.3 40.7 95.0 83.8 26.9\n",
+ "7 27.6 26.4 53.8 88.8 68.5\n",
+ "8 96.6 96.4 53.4 72.4 50.1\n",
+ "9 73.7 39.0 43.2 81.6 34.7\n"
+ ]
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(b)\n",
+ "print(df)"
]
},
{
@@ -112,7 +159,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
@@ -130,11 +177,27 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " score_1 score_2 score_3 score_4 score_5\n",
+ "0 53.1 95.0 67.5 35.0 78.4\n",
+ "1 61.3 40.8 30.8 37.8 87.6\n",
+ "2 20.6 73.2 44.2 14.6 91.8\n",
+ "3 57.4 0.1 96.1 4.2 69.5\n",
+ "4 83.6 20.5 85.4 22.8 35.9\n"
+ ]
+ }
+ ],
+ "source": [
+ "b_names = [\"score_1\", \"score_2\", \"score_3\", \"score_4\", \"score_5\"]\n",
+ "\n",
+ "df.columns = b_names\n",
+ "print(df.head())"
]
},
{
@@ -146,11 +209,25 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 30,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " score_1 score_3 score_5\n",
+ "0 53.1 67.5 78.4\n",
+ "1 61.3 30.8 87.6\n",
+ "2 20.6 44.2 91.8\n",
+ "3 57.4 96.1 69.5\n",
+ "4 83.6 85.4 35.9\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "subset_df = df[[\"score_1\", \"score_3\", \"score_5\"]]\n",
+ "print(subset_df.head())"
]
},
{
@@ -162,11 +239,20 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 31,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "56.95000000000001\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "avg_score3 = df[\"score_3\"].mean()\n",
+ "print(avg_score3)"
]
},
{
@@ -178,11 +264,20 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 32,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "88.8\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "max_score4 = df[\"score_4\"].max()\n",
+ "print(max_score4)"
]
},
{
@@ -194,11 +289,20 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 33,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "40.75\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "median_score2 = df[\"score_2\"].median()\n",
+ "print(median_score2)"
]
},
{
@@ -210,7 +314,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
@@ -231,11 +335,30 @@
},
{
"cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Description Quantity UnitPrice Revenue\n",
+ "0 LUNCH BAG APPLE DESIGN 1 1.65 1.65\n",
+ "1 SET OF 60 VINTAGE LEAF CAKE CASES 24 0.55 13.20\n",
+ "2 RIBBON REEL STRIPES DESIGN 1 1.65 1.65\n",
+ "3 WORLD WAR 2 GLIDERS ASSTD DESIGNS 2880 0.18 518.40\n",
+ "4 PLAYING CARDS JUBILEE UNION JACK 2 1.25 2.50\n",
+ "5 POPCORN HOLDER 7 0.85 5.95\n",
+ "6 BOX OF VINTAGE ALPHABET BLOCKS 1 11.95 11.95\n",
+ "7 PARTY BUNTING 4 4.95 19.80\n",
+ "8 JAZZ HEARTS ADDRESS BOOK 10 0.19 1.90\n",
+ "9 SET OF 4 SANTA PLACE SETTINGS 48 1.25 60.00\n"
+ ]
+ }
+ ],
+ "source": [
+ "orders_df = pd.DataFrame(orders)\n",
+ "print(orders_df)"
]
},
{
@@ -247,11 +370,24 @@
},
{
"cell_type": "code",
- "execution_count": 15,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total Quantity Ordered: 2978\n",
+ "Total Revenue Generated: 637.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_quantity = orders_df[\"Quantity\"].sum()\n",
+ "total_revenue = orders_df[\"Revenue\"].sum()\n",
+ "\n",
+ "print(\"Total Quantity Ordered:\", total_quantity)\n",
+ "print(\"Total Revenue Generated:\", total_revenue)"
]
},
{
@@ -263,11 +399,28 @@
},
{
"cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Most Expensive Item Price 11.95\n",
+ "Least Expensive Item Price 0.18\n",
+ "Price Difference 11.77\n"
+ ]
+ }
+ ],
+ "source": [
+ "max_price = orders_df[\"UnitPrice\"].max()\n",
+ "min_price = orders_df[\"UnitPrice\"].min()\n",
+ "\n",
+ "price_difference = max_price - min_price\n",
+ "\n",
+ "print(\"Most Expensive Item Price\", max_price)\n",
+ "print(\"Least Expensive Item Price\", min_price)\n",
+ "print(\"Price Difference\", price_difference)"
]
},
{
@@ -279,12 +432,12 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"# Run this code:\n",
- "admissions = pd.read_csv('../Admission_Predict.csv')"
+ "admissions = pd.read_csv(r'C:\\Users\\Timoteo\\OneDrive\\Documents\\Iron_Hack\\Week_2\\Labs\\D2\\lab-pandas-en\\Admission_Predict.csv')"
]
},
{
@@ -296,11 +449,129 @@
},
{
"cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Serial No. | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "0 1 337 118 4 4.5 4.5 9.65 \n",
+ "1 2 316 104 3 3.0 3.5 8.00 \n",
+ "2 3 322 110 3 3.5 2.5 8.67 \n",
+ "3 4 314 103 2 2.0 3.0 8.21 \n",
+ "4 5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "0 1 0.92 \n",
+ "1 1 0.72 \n",
+ "2 1 0.80 \n",
+ "3 0 0.65 \n",
+ "4 1 0.90 "
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions.head()"
]
},
{
@@ -312,11 +583,28 @@
},
{
"cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Serial No. 0\n",
+ "GRE Score 0\n",
+ "TOEFL Score 0\n",
+ "University Rating 0\n",
+ "SOP 0\n",
+ "LOR 0\n",
+ "CGPA 0\n",
+ "Research 0\n",
+ "Chance of Admit 0\n",
+ "dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(admissions.isnull().sum())"
]
},
{
@@ -328,11 +616,137 @@
},
{
"cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [],
- "source": [
- "# your code here"
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " GRE Score | \n",
+ " TOEFL Score | \n",
+ " University Rating | \n",
+ " SOP | \n",
+ " LOR | \n",
+ " CGPA | \n",
+ " Research | \n",
+ " Chance of Admit | \n",
+ "
\n",
+ " \n",
+ " | Serial No. | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1 | \n",
+ " 337 | \n",
+ " 118 | \n",
+ " 4 | \n",
+ " 4.5 | \n",
+ " 4.5 | \n",
+ " 9.65 | \n",
+ " 1 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 316 | \n",
+ " 104 | \n",
+ " 3 | \n",
+ " 3.0 | \n",
+ " 3.5 | \n",
+ " 8.00 | \n",
+ " 1 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 322 | \n",
+ " 110 | \n",
+ " 3 | \n",
+ " 3.5 | \n",
+ " 2.5 | \n",
+ " 8.67 | \n",
+ " 1 | \n",
+ " 0.80 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 314 | \n",
+ " 103 | \n",
+ " 2 | \n",
+ " 2.0 | \n",
+ " 3.0 | \n",
+ " 8.21 | \n",
+ " 0 | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 330 | \n",
+ " 115 | \n",
+ " 5 | \n",
+ " 4.5 | \n",
+ " 3.0 | \n",
+ " 9.34 | \n",
+ " 1 | \n",
+ " 0.90 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
+ "Serial No. \n",
+ "1 337 118 4 4.5 4.5 9.65 \n",
+ "2 316 104 3 3.0 3.5 8.00 \n",
+ "3 322 110 3 3.5 2.5 8.67 \n",
+ "4 314 103 2 2.0 3.0 8.21 \n",
+ "5 330 115 5 4.5 3.0 9.34 \n",
+ "\n",
+ " Research Chance of Admit \n",
+ "Serial No. \n",
+ "1 1 0.92 \n",
+ "2 1 0.72 \n",
+ "3 1 0.80 \n",
+ "4 0 0.65 \n",
+ "5 1 0.90 "
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "admissions = admissions.set_index(\"Serial No.\")\n",
+ "admissions.head()"
]
},
{
@@ -351,13 +765,24 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 59,
"metadata": {
"scrolled": true
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "101\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "condition = (admissions[\"CGPA\"] > 9) & (admissions[\"Research\"] == 1)\n",
+ "high_cgpa = condition.sum()\n",
+ "print(high_cgpa)\n",
+ "\n"
]
},
{
@@ -369,17 +794,48 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean Chance of Admit for CGPA > 9 and SOP < 3.5: 0.8019999999999999\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Filter rows based on conditions\n",
+ "new_condition = (admissions[\"CGPA\"] > 9) & (admissions[\"SOP\"] < 3.5)\n",
+ "\n",
+ "# Apply condition to the DataFrame, not to the boolean Series\n",
+ "mean_chance = admissions.loc[new_condition, \"Chance of Admit \"].mean()\n",
+ "\n",
+ "print(\"Mean Chance of Admit for CGPA > 9 and SOP < 3.5:\", mean_chance)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research', 'Chance of Admit ']\n"
+ ]
+ }
+ ],
"source": [
- "# your code here"
+ "print(admissions.columns.tolist())"
]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "base",
"language": "python",
"name": "python3"
},
@@ -393,7 +849,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.13"
+ "version": "3.13.5"
},
"toc": {
"base_numbering": "",