diff --git a/README.md b/README.md index b3314dc3eb1..99221ac4afc 100644 --- a/README.md +++ b/README.md @@ -8,7 +8,7 @@ < English | 中文 >

-**`IPEX-LLM`** is an LLM acceleration library for Intel ***CPU***, ***GPU*** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* and ***NPU*** [^1] . +**`IPEX-LLM`** is an LLM accelerator library for Intel ***CPU***, ***GPU*** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* and ***NPU*** [^1] . > [!NOTE] > - *It is built on top of the excellent work of **`llama.cpp`**, **`transformers`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.* > - *It provides seamless integration with [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md), [Ollama](docs/mddocs/Quickstart/ollama_quickstart.md), [HuggingFace transformers](python/llm/example/GPU/HuggingFace), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md), [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md), [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models), etc.* diff --git a/python/llm/src/ipex_llm/transformers/models/chatglm2.py b/python/llm/src/ipex_llm/transformers/models/chatglm2.py index 43cfe81686f..b13943020b4 100644 --- a/python/llm/src/ipex_llm/transformers/models/chatglm2.py +++ b/python/llm/src/ipex_llm/transformers/models/chatglm2.py @@ -183,7 +183,7 @@ def chatglm2_encoder_forward( if not kv_caches and not use_compress_kv: kv_caches = [None for _ in range(self.num_layers)] presents = () if use_cache else None - if hasattr(self, "gradient_checkpointing") and self.gradient_checkpointing and self.training: + if self.gradient_checkpointing and self.training: use_cache = False all_self_attentions = None @@ -193,8 +193,7 @@ def chatglm2_encoder_forward( all_hidden_states = all_hidden_states + (hidden_states,) layer = self._get_layer(index) - if hasattr(self, "gradient_checkpointing") and self.gradient_checkpointing \ - and self.training: + if self.gradient_checkpointing and self.training: layer_ret = torch.utils.checkpoint.checkpoint( layer, hidden_states, @@ -359,214 +358,3 @@ def chatglm2_attention_forward( output = self.dense(attn_output) return output, past_key_value - - -@torch.jit.script -def apply_rotary_pos_emb_original(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: - # x: [sq, b, np, hn] - sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) - rot_dim = rope_cache.shape[-2] * 2 - x, x_pass = x[..., :rot_dim], x[..., rot_dim:] - # truncate to support variable sizes - rope_cache = rope_cache[:sq] - xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) - rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) - x_out2 = torch.stack( - [ - xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], - xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], - ], - -1, - ) - x_out2 = x_out2.flatten(3) - return torch.cat((x_out2, x_pass), dim=-1) - - -def codegeex_model_forward( - self, - input_ids, - position_ids: Optional[torch.Tensor]=None, - attention_mask: Optional[torch.BoolTensor]=None, - full_attention_mask: Optional[torch.BoolTensor]=None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, - inputs_embeds: Optional[torch.Tensor]=None, - use_cache: Optional[bool]=None, - output_hidden_states: Optional[bool]=None, - return_dict: Optional[bool]=None, -): - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None - else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if inputs_embeds is None: - batch_size, seq_length = input_ids.shape - inputs_embeds = self.embedding(input_ids) - else: - inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() - seq_length, batch_size, _ = inputs_embeds.shape - input_ids = torch.empty((batch_size, seq_length), - dtype=inputs_embeds.dtype, device=inputs_embeds.device) - - if full_attention_mask is None: - if (attention_mask is not None and not attention_mask.all()) or ( - past_key_values and seq_length != 1): - full_attention_mask = self.get_masks(input_ids, - past_key_values, - padding_mask=attention_mask) - - # ipex-llm changes begin - # 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids` - # 2. generate `causal_mask` and replace `full_attention_mask` with it - if position_ids is None: - if past_key_values is None: - position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device) - else: - if isinstance(past_key_values, DynamicCompressCache): - kv_length = past_key_values.get_seq_length() - else: - kv_length = past_key_values[0][0].size(0) - position_ids = torch.arange(kv_length, kv_length + seq_length, - dtype=torch.int64, device=inputs_embeds.device) - position_ids = position_ids.repeat(batch_size, 1) - use_fuse_rope = input_ids.device.type == "xpu" and not self.training - - # Rotary positional embeddings - rotary_pos_emb = self.rotary_pos_emb(self.seq_length) - if position_ids is not None: - rotary_pos_emb = rotary_pos_emb[position_ids] - else: - rotary_pos_emb = rotary_pos_emb[None, :seq_length] - if use_fuse_rope: - # Repeat cos sin here, call only once for each token. - # Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two. - # If put this to attension forward, it will generate too many times. - cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1) - cos = cos.squeeze(-1) - sin = sin.squeeze(-1) - cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) - sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) - rotary_pos_emb = (cos, sin) - else: - rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() - - # `full_attention_mask` is not None only when - # `past_key_values` is not None and `seq_length` > 1 - if full_attention_mask is not None: - causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], - dtype=inputs_embeds.dtype, device=inputs_embeds.device) - mask_value = torch.finfo(inputs_embeds.dtype).min - causal_mask.masked_fill_(full_attention_mask, mask_value) - elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None): - full_attention_mask = self.get_masks(input_ids, - past_key_values, - padding_mask=attention_mask) - causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], - dtype=inputs_embeds.dtype, device=inputs_embeds.device) - mask_value = torch.finfo(inputs_embeds.dtype).min - causal_mask.masked_fill_(full_attention_mask, mask_value) - else: - causal_mask = None - - # Run encoder. - hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( - inputs_embeds, causal_mask, - rotary_pos_emb=rotary_pos_emb, - kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states - ) - # ipex-llm changes end - - if not return_dict: - return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] - if v is not None) - - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=presents, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - ) - - -def codegeex_attention_forward( - self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True -): - q_len, bsz, _ = hidden_states.size() - n_head = self.num_attention_heads_per_partition - n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head - head_dim = self.hidden_size_per_attention_head - - past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3), - kv_cache[1].permute(1, 2, 0, 3)) - qkv = self.query_key_value(hidden_states) - qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim) - # [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim] - qkv = qkv.permute(1, 2, 0, 3) - query_layer, key_layer, value_layer = qkv.split([n_head, - n_kv_head, - n_kv_head], dim=1) - kv_seq_len = key_layer.shape[2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[2] - - # apply relative positional encoding (rotary embedding) - if len(rotary_pos_emb) == 2 and isinstance(rotary_pos_emb, tuple): - cos, sin = rotary_pos_emb - rot_dim = cos.shape[-1] - query_layer = query_layer.transpose(1, 2) - key_layer = key_layer.transpose(1, 2) - query_layer_cur = query_layer[..., :rot_dim] - key_layer_cur = key_layer[..., :rot_dim] - # ipex_llm's apply_rotary_embedding can change the origin storage, - # so query_layer will get the result directly. - torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur) - torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur) - query_layer = query_layer.transpose(1, 2) - key_layer = key_layer.transpose(1, 2) - else: - query_layer = apply_rotary_pos_emb_original(query_layer, rotary_pos_emb) - key_layer = apply_rotary_pos_emb_original(key_layer, rotary_pos_emb) - - key_layer, value_layer = update_past_key_value( - past_key_value, key_layer, value_layer, - kv_seq_len, False, hidden_states.device - ) - # past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim] - past_key_value = (key_layer.permute(2, 0, 1, 3), - value_layer.permute(2, 0, 1, 3)) if use_cache else None - - # ================= - # Output. [sq, b, h] - # ================= - context_layer = None - if use_sdp(q_len, kv_seq_len, head_dim, query_layer): - import xe_addons - context_layer = xe_addons.sdp(query_layer, key_layer, value_layer, attention_mask) - elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_layer, self.training): - import xe_addons - context_layer = xe_addons.sdp_causal(query_layer, key_layer, value_layer, attention_mask) - else: - # repeat k/v heads if n_kv_heads < n_heads - key_layer = repeat_kv(key_layer, n_head // n_kv_head) - value_layer = repeat_kv(value_layer, n_head // n_kv_head) - if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: - context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, - key_layer, - value_layer, - is_causal=True) - else: - if attention_mask is not None: - attention_mask = ~attention_mask - context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, - key_layer, - value_layer, - attention_mask) - - context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len, - bsz, - n_head * head_dim) - output = self.dense(context_layer) - - return output, past_key_value