This repository was archived by the owner on Aug 5, 2022. It is now read-only.
File tree Expand file tree Collapse file tree 15 files changed +27751
-56
lines changed
models/intel_optimized_models Expand file tree Collapse file tree 15 files changed +27751
-56
lines changed Original file line number Diff line number Diff line change
1
+ name: "AlexNet"
2
+ layer {
3
+ name: "data"
4
+ type: "DummyData"
5
+ top: "data"
6
+ top: "label"
7
+ include {
8
+ phase: TRAIN
9
+ }
10
+ dummy_data_param {
11
+ data_filler {
12
+ type: "constant"
13
+ value: 0.01
14
+ }
15
+ shape: { dim: 256 dim: 3 dim: 224 dim: 224 }
16
+ shape: { dim: 256 dim: 1 dim: 1 dim: 1 }
17
+ }
18
+ }
19
+ layer {
20
+ name: "data"
21
+ type: "DummyData"
22
+ top: "data"
23
+ top: "label"
24
+ include {
25
+ phase: TEST
26
+ }
27
+ dummy_data_param {
28
+ data_filler {
29
+ type: "constant"
30
+ value: 0.01
31
+ }
32
+ shape: { dim: 256 dim: 3 dim: 224 dim: 224 }
33
+ shape: { dim: 256 dim: 1 dim: 1 dim: 1 }
34
+ }
35
+ }
36
+
37
+ layer {
38
+ name: "conv1"
39
+ type: "Convolution"
40
+ bottom: "data"
41
+ top: "conv1"
42
+ param {
43
+ lr_mult: 1
44
+ decay_mult: 1
45
+ }
46
+ param {
47
+ lr_mult: 2
48
+ decay_mult: 0
49
+ }
50
+ convolution_param {
51
+ num_output: 96
52
+ kernel_size: 11
53
+ stride: 4
54
+ weight_filler {
55
+ type: "gaussian"
56
+ std: 0.01
57
+ }
58
+ bias_filler {
59
+ type: "constant"
60
+ value: 0
61
+ }
62
+ }
63
+ }
64
+ layer {
65
+ name: "relu1"
66
+ type: "ReLU"
67
+ bottom: "conv1"
68
+ top: "conv1"
69
+ }
70
+ layer {
71
+ name: "norm1"
72
+ type: "LRN"
73
+ bottom: "conv1"
74
+ top: "norm1"
75
+ lrn_param {
76
+ local_size: 5
77
+ alpha: 0.0001
78
+ beta: 0.75
79
+ }
80
+ }
81
+ layer {
82
+ name: "pool1"
83
+ type: "Pooling"
84
+ bottom: "norm1"
85
+ top: "pool1"
86
+ pooling_param {
87
+ pool: MAX
88
+ kernel_size: 3
89
+ stride: 2
90
+ }
91
+ }
92
+ layer {
93
+ name: "conv2"
94
+ type: "Convolution"
95
+ bottom: "pool1"
96
+ top: "conv2"
97
+ param {
98
+ lr_mult: 1
99
+ decay_mult: 1
100
+ }
101
+ param {
102
+ lr_mult: 2
103
+ decay_mult: 0
104
+ }
105
+ convolution_param {
106
+ num_output: 256
107
+ pad: 2
108
+ kernel_size: 5
109
+ group: 2
110
+ weight_filler {
111
+ type: "gaussian"
112
+ std: 0.01
113
+ }
114
+ bias_filler {
115
+ type: "constant"
116
+ value: 0.1
117
+ }
118
+ }
119
+ }
120
+ layer {
121
+ name: "relu2"
122
+ type: "ReLU"
123
+ bottom: "conv2"
124
+ top: "conv2"
125
+ }
126
+ layer {
127
+ name: "norm2"
128
+ type: "LRN"
129
+ bottom: "conv2"
130
+ top: "norm2"
131
+ lrn_param {
132
+ local_size: 5
133
+ alpha: 0.0001
134
+ beta: 0.75
135
+ }
136
+ }
137
+ layer {
138
+ name: "pool2"
139
+ type: "Pooling"
140
+ bottom: "norm2"
141
+ top: "pool2"
142
+ pooling_param {
143
+ pool: MAX
144
+ kernel_size: 3
145
+ stride: 2
146
+ }
147
+ }
148
+ layer {
149
+ name: "conv3"
150
+ type: "Convolution"
151
+ bottom: "pool2"
152
+ top: "conv3"
153
+ param {
154
+ lr_mult: 1
155
+ decay_mult: 1
156
+ }
157
+ param {
158
+ lr_mult: 2
159
+ decay_mult: 0
160
+ }
161
+ convolution_param {
162
+ num_output: 384
163
+ pad: 1
164
+ kernel_size: 3
165
+ weight_filler {
166
+ type: "gaussian"
167
+ std: 0.01
168
+ }
169
+ bias_filler {
170
+ type: "constant"
171
+ value: 0
172
+ }
173
+ }
174
+ }
175
+ layer {
176
+ name: "relu3"
177
+ type: "ReLU"
178
+ bottom: "conv3"
179
+ top: "conv3"
180
+ }
181
+ layer {
182
+ name: "conv4"
183
+ type: "Convolution"
184
+ bottom: "conv3"
185
+ top: "conv4"
186
+ param {
187
+ lr_mult: 1
188
+ decay_mult: 1
189
+ }
190
+ param {
191
+ lr_mult: 2
192
+ decay_mult: 0
193
+ }
194
+ convolution_param {
195
+ num_output: 384
196
+ pad: 1
197
+ kernel_size: 3
198
+ group: 2
199
+ weight_filler {
200
+ type: "gaussian"
201
+ std: 0.01
202
+ }
203
+ bias_filler {
204
+ type: "constant"
205
+ value: 0.1
206
+ }
207
+ }
208
+ }
209
+ layer {
210
+ name: "relu4"
211
+ type: "ReLU"
212
+ bottom: "conv4"
213
+ top: "conv4"
214
+ }
215
+ layer {
216
+ name: "conv5"
217
+ type: "Convolution"
218
+ bottom: "conv4"
219
+ top: "conv5"
220
+ param {
221
+ lr_mult: 1
222
+ decay_mult: 1
223
+ }
224
+ param {
225
+ lr_mult: 2
226
+ decay_mult: 0
227
+ }
228
+ convolution_param {
229
+ num_output: 256
230
+ pad: 1
231
+ kernel_size: 3
232
+ group: 2
233
+ weight_filler {
234
+ type: "gaussian"
235
+ std: 0.01
236
+ }
237
+ bias_filler {
238
+ type: "constant"
239
+ value: 0.1
240
+ }
241
+ }
242
+ }
243
+ layer {
244
+ name: "relu5"
245
+ type: "ReLU"
246
+ bottom: "conv5"
247
+ top: "conv5"
248
+ }
249
+ layer {
250
+ name: "pool5"
251
+ type: "Pooling"
252
+ bottom: "conv5"
253
+ top: "pool5"
254
+ pooling_param {
255
+ pool: MAX
256
+ kernel_size: 3
257
+ stride: 2
258
+ }
259
+ }
260
+ layer {
261
+ name: "fc6"
262
+ type: "InnerProduct"
263
+ bottom: "pool5"
264
+ top: "fc6"
265
+ param {
266
+ lr_mult: 1
267
+ decay_mult: 1
268
+ }
269
+ param {
270
+ lr_mult: 2
271
+ decay_mult: 0
272
+ }
273
+ inner_product_param {
274
+ num_output: 4096
275
+ weight_filler {
276
+ type: "gaussian"
277
+ std: 0.005
278
+ }
279
+ bias_filler {
280
+ type: "constant"
281
+ value: 0.1
282
+ }
283
+ }
284
+ }
285
+ layer {
286
+ name: "relu6"
287
+ type: "ReLU"
288
+ bottom: "fc6"
289
+ top: "fc6"
290
+ }
291
+ layer {
292
+ name: "drop6"
293
+ type: "Dropout"
294
+ bottom: "fc6"
295
+ top: "fc6"
296
+ dropout_param {
297
+ dropout_ratio: 0.5
298
+ }
299
+ }
300
+ layer {
301
+ name: "fc7"
302
+ type: "InnerProduct"
303
+ bottom: "fc6"
304
+ top: "fc7"
305
+ param {
306
+ lr_mult: 1
307
+ decay_mult: 1
308
+ }
309
+ param {
310
+ lr_mult: 2
311
+ decay_mult: 0
312
+ }
313
+ inner_product_param {
314
+ num_output: 4096
315
+ weight_filler {
316
+ type: "gaussian"
317
+ std: 0.005
318
+ }
319
+ bias_filler {
320
+ type: "constant"
321
+ value: 0.1
322
+ }
323
+ }
324
+ }
325
+ layer {
326
+ name: "relu7"
327
+ type: "ReLU"
328
+ bottom: "fc7"
329
+ top: "fc7"
330
+ }
331
+ layer {
332
+ name: "drop7"
333
+ type: "Dropout"
334
+ bottom: "fc7"
335
+ top: "fc7"
336
+ dropout_param {
337
+ dropout_ratio: 0.5
338
+ }
339
+ }
340
+ layer {
341
+ name: "fc8"
342
+ type: "InnerProduct"
343
+ bottom: "fc7"
344
+ top: "fc8"
345
+ param {
346
+ lr_mult: 1
347
+ decay_mult: 1
348
+ }
349
+ param {
350
+ lr_mult: 2
351
+ decay_mult: 0
352
+ }
353
+ inner_product_param {
354
+ num_output: 1000
355
+ weight_filler {
356
+ type: "gaussian"
357
+ std: 0.01
358
+ }
359
+ bias_filler {
360
+ type: "constant"
361
+ value: 0
362
+ }
363
+ }
364
+ }
365
+ layer {
366
+ name: "loss"
367
+ type: "SoftmaxWithLoss"
368
+ bottom: "fc8"
369
+ bottom: "label"
370
+ top: "loss"
371
+ }
372
+ layer {
373
+ name: "loss3/top-1"
374
+ type: "Accuracy"
375
+ bottom: "fc8"
376
+ bottom: "label"
377
+ top: "loss3/top-1"
378
+ include {
379
+ phase: TEST
380
+ }
381
+ }
382
+ layer {
383
+ name: "loss3/top-5"
384
+ type: "Accuracy"
385
+ bottom: "fc8"
386
+ bottom: "label"
387
+ top: "loss3/top-5"
388
+ include {
389
+ phase: TEST
390
+ }
391
+ accuracy_param {
392
+ top_k: 5
393
+ }
394
+ }
You can’t perform that action at this time.
0 commit comments