Skip to content
This repository was archived by the owner on Aug 5, 2022. It is now read-only.

Commit aa2bb84

Browse files
committed
add scripts for installing deps, building caffe and running benchmark
1 parent d9d52b7 commit aa2bb84

15 files changed

+27751
-56
lines changed
Lines changed: 394 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,394 @@
1+
name: "AlexNet"
2+
layer {
3+
name: "data"
4+
type: "DummyData"
5+
top: "data"
6+
top: "label"
7+
include {
8+
phase: TRAIN
9+
}
10+
dummy_data_param {
11+
data_filler {
12+
type: "constant"
13+
value: 0.01
14+
}
15+
shape: { dim: 256 dim: 3 dim: 224 dim: 224 }
16+
shape: { dim: 256 dim: 1 dim: 1 dim: 1 }
17+
}
18+
}
19+
layer {
20+
name: "data"
21+
type: "DummyData"
22+
top: "data"
23+
top: "label"
24+
include {
25+
phase: TEST
26+
}
27+
dummy_data_param {
28+
data_filler {
29+
type: "constant"
30+
value: 0.01
31+
}
32+
shape: { dim: 256 dim: 3 dim: 224 dim: 224 }
33+
shape: { dim: 256 dim: 1 dim: 1 dim: 1 }
34+
}
35+
}
36+
37+
layer {
38+
name: "conv1"
39+
type: "Convolution"
40+
bottom: "data"
41+
top: "conv1"
42+
param {
43+
lr_mult: 1
44+
decay_mult: 1
45+
}
46+
param {
47+
lr_mult: 2
48+
decay_mult: 0
49+
}
50+
convolution_param {
51+
num_output: 96
52+
kernel_size: 11
53+
stride: 4
54+
weight_filler {
55+
type: "gaussian"
56+
std: 0.01
57+
}
58+
bias_filler {
59+
type: "constant"
60+
value: 0
61+
}
62+
}
63+
}
64+
layer {
65+
name: "relu1"
66+
type: "ReLU"
67+
bottom: "conv1"
68+
top: "conv1"
69+
}
70+
layer {
71+
name: "norm1"
72+
type: "LRN"
73+
bottom: "conv1"
74+
top: "norm1"
75+
lrn_param {
76+
local_size: 5
77+
alpha: 0.0001
78+
beta: 0.75
79+
}
80+
}
81+
layer {
82+
name: "pool1"
83+
type: "Pooling"
84+
bottom: "norm1"
85+
top: "pool1"
86+
pooling_param {
87+
pool: MAX
88+
kernel_size: 3
89+
stride: 2
90+
}
91+
}
92+
layer {
93+
name: "conv2"
94+
type: "Convolution"
95+
bottom: "pool1"
96+
top: "conv2"
97+
param {
98+
lr_mult: 1
99+
decay_mult: 1
100+
}
101+
param {
102+
lr_mult: 2
103+
decay_mult: 0
104+
}
105+
convolution_param {
106+
num_output: 256
107+
pad: 2
108+
kernel_size: 5
109+
group: 2
110+
weight_filler {
111+
type: "gaussian"
112+
std: 0.01
113+
}
114+
bias_filler {
115+
type: "constant"
116+
value: 0.1
117+
}
118+
}
119+
}
120+
layer {
121+
name: "relu2"
122+
type: "ReLU"
123+
bottom: "conv2"
124+
top: "conv2"
125+
}
126+
layer {
127+
name: "norm2"
128+
type: "LRN"
129+
bottom: "conv2"
130+
top: "norm2"
131+
lrn_param {
132+
local_size: 5
133+
alpha: 0.0001
134+
beta: 0.75
135+
}
136+
}
137+
layer {
138+
name: "pool2"
139+
type: "Pooling"
140+
bottom: "norm2"
141+
top: "pool2"
142+
pooling_param {
143+
pool: MAX
144+
kernel_size: 3
145+
stride: 2
146+
}
147+
}
148+
layer {
149+
name: "conv3"
150+
type: "Convolution"
151+
bottom: "pool2"
152+
top: "conv3"
153+
param {
154+
lr_mult: 1
155+
decay_mult: 1
156+
}
157+
param {
158+
lr_mult: 2
159+
decay_mult: 0
160+
}
161+
convolution_param {
162+
num_output: 384
163+
pad: 1
164+
kernel_size: 3
165+
weight_filler {
166+
type: "gaussian"
167+
std: 0.01
168+
}
169+
bias_filler {
170+
type: "constant"
171+
value: 0
172+
}
173+
}
174+
}
175+
layer {
176+
name: "relu3"
177+
type: "ReLU"
178+
bottom: "conv3"
179+
top: "conv3"
180+
}
181+
layer {
182+
name: "conv4"
183+
type: "Convolution"
184+
bottom: "conv3"
185+
top: "conv4"
186+
param {
187+
lr_mult: 1
188+
decay_mult: 1
189+
}
190+
param {
191+
lr_mult: 2
192+
decay_mult: 0
193+
}
194+
convolution_param {
195+
num_output: 384
196+
pad: 1
197+
kernel_size: 3
198+
group: 2
199+
weight_filler {
200+
type: "gaussian"
201+
std: 0.01
202+
}
203+
bias_filler {
204+
type: "constant"
205+
value: 0.1
206+
}
207+
}
208+
}
209+
layer {
210+
name: "relu4"
211+
type: "ReLU"
212+
bottom: "conv4"
213+
top: "conv4"
214+
}
215+
layer {
216+
name: "conv5"
217+
type: "Convolution"
218+
bottom: "conv4"
219+
top: "conv5"
220+
param {
221+
lr_mult: 1
222+
decay_mult: 1
223+
}
224+
param {
225+
lr_mult: 2
226+
decay_mult: 0
227+
}
228+
convolution_param {
229+
num_output: 256
230+
pad: 1
231+
kernel_size: 3
232+
group: 2
233+
weight_filler {
234+
type: "gaussian"
235+
std: 0.01
236+
}
237+
bias_filler {
238+
type: "constant"
239+
value: 0.1
240+
}
241+
}
242+
}
243+
layer {
244+
name: "relu5"
245+
type: "ReLU"
246+
bottom: "conv5"
247+
top: "conv5"
248+
}
249+
layer {
250+
name: "pool5"
251+
type: "Pooling"
252+
bottom: "conv5"
253+
top: "pool5"
254+
pooling_param {
255+
pool: MAX
256+
kernel_size: 3
257+
stride: 2
258+
}
259+
}
260+
layer {
261+
name: "fc6"
262+
type: "InnerProduct"
263+
bottom: "pool5"
264+
top: "fc6"
265+
param {
266+
lr_mult: 1
267+
decay_mult: 1
268+
}
269+
param {
270+
lr_mult: 2
271+
decay_mult: 0
272+
}
273+
inner_product_param {
274+
num_output: 4096
275+
weight_filler {
276+
type: "gaussian"
277+
std: 0.005
278+
}
279+
bias_filler {
280+
type: "constant"
281+
value: 0.1
282+
}
283+
}
284+
}
285+
layer {
286+
name: "relu6"
287+
type: "ReLU"
288+
bottom: "fc6"
289+
top: "fc6"
290+
}
291+
layer {
292+
name: "drop6"
293+
type: "Dropout"
294+
bottom: "fc6"
295+
top: "fc6"
296+
dropout_param {
297+
dropout_ratio: 0.5
298+
}
299+
}
300+
layer {
301+
name: "fc7"
302+
type: "InnerProduct"
303+
bottom: "fc6"
304+
top: "fc7"
305+
param {
306+
lr_mult: 1
307+
decay_mult: 1
308+
}
309+
param {
310+
lr_mult: 2
311+
decay_mult: 0
312+
}
313+
inner_product_param {
314+
num_output: 4096
315+
weight_filler {
316+
type: "gaussian"
317+
std: 0.005
318+
}
319+
bias_filler {
320+
type: "constant"
321+
value: 0.1
322+
}
323+
}
324+
}
325+
layer {
326+
name: "relu7"
327+
type: "ReLU"
328+
bottom: "fc7"
329+
top: "fc7"
330+
}
331+
layer {
332+
name: "drop7"
333+
type: "Dropout"
334+
bottom: "fc7"
335+
top: "fc7"
336+
dropout_param {
337+
dropout_ratio: 0.5
338+
}
339+
}
340+
layer {
341+
name: "fc8"
342+
type: "InnerProduct"
343+
bottom: "fc7"
344+
top: "fc8"
345+
param {
346+
lr_mult: 1
347+
decay_mult: 1
348+
}
349+
param {
350+
lr_mult: 2
351+
decay_mult: 0
352+
}
353+
inner_product_param {
354+
num_output: 1000
355+
weight_filler {
356+
type: "gaussian"
357+
std: 0.01
358+
}
359+
bias_filler {
360+
type: "constant"
361+
value: 0
362+
}
363+
}
364+
}
365+
layer {
366+
name: "loss"
367+
type: "SoftmaxWithLoss"
368+
bottom: "fc8"
369+
bottom: "label"
370+
top: "loss"
371+
}
372+
layer {
373+
name: "loss3/top-1"
374+
type: "Accuracy"
375+
bottom: "fc8"
376+
bottom: "label"
377+
top: "loss3/top-1"
378+
include {
379+
phase: TEST
380+
}
381+
}
382+
layer {
383+
name: "loss3/top-5"
384+
type: "Accuracy"
385+
bottom: "fc8"
386+
bottom: "label"
387+
top: "loss3/top-5"
388+
include {
389+
phase: TEST
390+
}
391+
accuracy_param {
392+
top_k: 5
393+
}
394+
}

0 commit comments

Comments
 (0)