|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import copy |
| 4 | +import argparse |
| 5 | + |
| 6 | +from caffe.proto import caffe_pb2 |
| 7 | +import google.protobuf.text_format as txtf |
| 8 | + |
| 9 | +def readFile(filePath): |
| 10 | + lines = [] |
| 11 | + file = open(filePath, 'r') |
| 12 | + for line in file.readlines(): |
| 13 | + lines.append(line) |
| 14 | + file.close() |
| 15 | + |
| 16 | + return lines |
| 17 | + |
| 18 | +def writeFile(filePath, lines): |
| 19 | + file = open(filePath, 'w+') |
| 20 | + file.write(lines) |
| 21 | + file.close() |
| 22 | + |
| 23 | +def parseLog(log): |
| 24 | + lines = readFile(log) |
| 25 | + model_start = False |
| 26 | + time_start = False |
| 27 | + model_lines = [] |
| 28 | + time_lines = [] |
| 29 | + for line in lines: |
| 30 | + trim_line = line.strip() |
| 31 | + if trim_line.endswith("Initializing net from parameters:"): |
| 32 | + model_start = True |
| 33 | + continue |
| 34 | + if model_start: |
| 35 | + if trim_line.find("Creating layer") <> -1: |
| 36 | + model_start = False |
| 37 | + continue |
| 38 | + model_lines.append(line) |
| 39 | + |
| 40 | + if trim_line.endswith("Average time per layer:"): |
| 41 | + time_start = True |
| 42 | + continue |
| 43 | + if time_start: |
| 44 | + if trim_line.find("Average Forward pass") <> -1: |
| 45 | + time_start = False |
| 46 | + break |
| 47 | + time_lines.append(line) |
| 48 | + |
| 49 | + model_lines = model_lines[1:] |
| 50 | + model_str = "" |
| 51 | + for line in model_lines: |
| 52 | + model_str = model_str + line |
| 53 | + |
| 54 | + return (model_str, time_lines) |
| 55 | + |
| 56 | +def parseTimeLines(timeLines): |
| 57 | + layer_map = {} |
| 58 | + for line in timeLines: |
| 59 | + trim_line = line.strip() |
| 60 | + items = trim_line.split("\t") |
| 61 | + layer_items = items[0].split(" ") |
| 62 | + layer_name = layer_items[-1] |
| 63 | + time_items = items[1].split(" ") |
| 64 | + if layer_name not in layer_map.keys(): |
| 65 | + layer_map[layer_name] = (float)(time_items[1]) |
| 66 | + else: |
| 67 | + layer_map[layer_name] = layer_map[layer_name] + (float)(time_items[1]) |
| 68 | + |
| 69 | + return layer_map |
| 70 | + |
| 71 | +def parseModelStr(modelStr): |
| 72 | + net = caffe_pb2.NetParameter() |
| 73 | + txtf.Merge(modelStr, net) |
| 74 | + layer_model_map = {} |
| 75 | + global_engine = "CAFFE" |
| 76 | + if net.engine != "": |
| 77 | + global_engine = net.engine |
| 78 | + for index in range(0, len(net.layer)): |
| 79 | + engine = global_engine |
| 80 | + l = net.layer[index] |
| 81 | + if l.engine != "": |
| 82 | + engine = l.engine |
| 83 | + param_engine = -1 |
| 84 | + if l.type == "Convolution" or l.type == "Deconvolution": |
| 85 | + if l.convolution_param.engine != "": |
| 86 | + param_engine = l.convolution_param.engine |
| 87 | + elif l.type == "BatchNorm": |
| 88 | + if l.batch_norm_param.engine != "": |
| 89 | + param_engine = l.batch_norm_param.engine |
| 90 | + elif l.type == "Concat": |
| 91 | + if l.concat_param.engine != "": |
| 92 | + param_engine = l.concat_param.engine |
| 93 | + elif l.type == "Eltwise": |
| 94 | + if l.eltwise_param.engine != "": |
| 95 | + param_engine = l.eltwise_param.engine |
| 96 | + elif l.type == "InnerProduct": |
| 97 | + if l.inner_product_param.engine != "": |
| 98 | + param_engine = l.inner_product_param.engine |
| 99 | + elif l.type == "LRN": |
| 100 | + if l.lrn_param.engine != "": |
| 101 | + param_engine = l.lrn_param.engine |
| 102 | + elif l.type == "Pooling": |
| 103 | + if l.pooling_param.engine != "": |
| 104 | + param_engine = l.pooling_param.engine |
| 105 | + elif l.type == "ReLU": |
| 106 | + if l.relu_param.engine != "": |
| 107 | + param_engine = l.relu_param.engine |
| 108 | + |
| 109 | + if param_engine == 0 or param_engine == 1: |
| 110 | + engine = "CAFFE" |
| 111 | + elif param_engine == 3: |
| 112 | + engine = "MKL2017" |
| 113 | + elif param_engine == 4: |
| 114 | + engine = "MKLDNN" |
| 115 | + layer_model_map[l.name] = (index, engine, l) |
| 116 | + |
| 117 | + return (net, layer_model_map) |
| 118 | + |
| 119 | +def selectOptimalEngine(layers): |
| 120 | + optimal_layer = None |
| 121 | + min_time = sys.float_info.max |
| 122 | + for layer in layers: |
| 123 | + if layer[2] < min_time: |
| 124 | + min_time = layer[2] |
| 125 | + optimal_layer = layer |
| 126 | + |
| 127 | + return optimal_layer |
| 128 | + |
| 129 | +def tuneEngine(logs, model): |
| 130 | + if len(logs) <= 1: |
| 131 | + print "[ERROR] Please specify two or more log files" |
| 132 | + exit(1) |
| 133 | + |
| 134 | + for log in logs: |
| 135 | + if not os.path.exists(log): |
| 136 | + print "[ERROR] Please specify valid log file:", log |
| 137 | + exit(1) |
| 138 | + |
| 139 | + layer_map = {} |
| 140 | + net = None |
| 141 | + for log in logs: |
| 142 | + log_name = os.path.basename(log) |
| 143 | + (model_str, time_lines) = parseLog(log) |
| 144 | + (net, layer_model_map) = parseModelStr(model_str) |
| 145 | + layer_time_map = parseTimeLines(time_lines) |
| 146 | + for k, v in layer_model_map.items(): |
| 147 | + if k not in layer_map.keys(): |
| 148 | + layer_map[k] = [(v[0], v[1], layer_time_map[k], v[2])] |
| 149 | + else: |
| 150 | + layer_map_v = layer_map[k] |
| 151 | + layer_map_v.append((v[0], v[1], layer_time_map[k], v[2])) |
| 152 | + layer_map[k] = layer_map_v |
| 153 | + |
| 154 | + optimal_layer_map = {} |
| 155 | + for k, v in layer_map.items(): |
| 156 | + optimal_layer = selectOptimalEngine(v) |
| 157 | + assert(optimal_layer != None) |
| 158 | + optimal_layer_map[optimal_layer[0]] = optimal_layer[3] |
| 159 | + |
| 160 | + genModel(net, model, optimal_layer_map) |
| 161 | + |
| 162 | +def genModel(net, model, optimal_layer_map): |
| 163 | + net_str = "" |
| 164 | + net_str += "name: \"" + net.name + "\"\n" |
| 165 | + for index in range(0, len(net.layer)): |
| 166 | + net_str += "layer {\n" |
| 167 | + l = net.layer[index] |
| 168 | + if l.type.endswith("Data"): |
| 169 | + net_str += str(l) + "\n}\n" |
| 170 | + continue |
| 171 | + l = optimal_layer_map[index] |
| 172 | + net_str += str(l) + "\n}\n" |
| 173 | + with open(model, 'w') as f: |
| 174 | + net = caffe_pb2.NetParameter() |
| 175 | + txtf.Merge(net_str, net) |
| 176 | + f.write(str(net)) |
| 177 | + print "[INFO] Complete model engine tuning:", model |
| 178 | + |
| 179 | +if __name__ == '__main__': |
| 180 | + parser = argparse.ArgumentParser() |
| 181 | + |
| 182 | + parser.add_argument('-l', '--logs', nargs='+', help='require the caffe time logs', required=True) |
| 183 | + |
| 184 | + parser.add_argument('-o', '--output', action='store', dest='output', default="", |
| 185 | + help='require the model output') |
| 186 | + |
| 187 | + parser.add_argument('-v', '--version', action='version', version='%(prog)s 1.0') |
| 188 | + |
| 189 | + params = parser.parse_args() |
| 190 | + tuneEngine(params.logs, params.output) |
0 commit comments