Releases: intel/ai-reference-models
Releases · intel/ai-reference-models
Model Zoo for Intel® Architecture v2.11.0
Supported Frameworks
- Intel® Optimizations for TensorFlow
v2.12.0 - Intel® Optimizations for TensorFlow
v2.11.dev202242for optimized performance on Sapphire Rapids - Intel® Extension for TensorFlow
v1.2.0 - Intel® Extension for PyTorch
v2.0.0+cpu - Intel® Extension for PyTorch
v1.13.120+xpu
New models
- New precisions
FP16andBFloat16for different workloads
New features
- Intel® Data Center GPU Flex and Max Series workloads validated with Intel® Extension for PyTorch
v1.13.120+xpuand Intel® Extension for TensorFlowv1.2.0. - Intel® Cloud Data Connector, a tool that helps to use cloud storage tools as AWS Buckets, Google Storage and Azure Storage. Also helps to configure Machine Learning jobs on AzureML. This tool is a helper to use cloud services in Machine Learning process, also provides a common way to interact between cloud providers.
- Dataset Downloader command line interface, a tool to download and apply the preprocessing needed for the list of supported datasets.
Bug fixes:
- This release contains many bug fixes to the previous versions. Please see the commit history here: https://github.com/IntelAI/models/commits/v2.11.0
Supported Configurations
Intel Model Zoo v2.11.0 is validated on the following environment:
- Ubuntu 22.04 LTS
- Ubuntu 20.04 LTS
- Windows 11
- Windows Subsystem for Linux 2 (WSL2)
- Python 3.8, 3.9
Model Zoo for Intel® Architecture v2.7.0
Supported Frameworks
- TensorFlow
v2.8.0 - PyTorch
v1.11.0andIPEXv1.11.0
New models
- N/A
New features
Transfer Learningnotebooks forNLPandComputer Vision: https://github.com/IntelAI/models/tree/v2.7.0/docs/notebooks/transfer_learning- Consolidate
TensorFlowandPyTorchbenchmark tables based on the use case: https://github.com/IntelAI/models/tree/v2.7.0#use-cases - Added links for required dataset for each use case: https://github.com/IntelAI/models/tree/v2.7.0/benchmarks
- Initial support for running several models on
Windowsplatform: https://github.com/IntelAI/models/blob/master/docs/general/tensorflow/Windows.md - Experimental support for running models on
CentOS 8 Stream,Red Hat 8andSLES 15
Bug fixes:
- This release contains many bug fixes to the previous versions. Please see the commit history here: https://github.com/IntelAI/models/commits/v2.7.0
Supported Configurations
Intel Model Zoo 2.7.0 is validated on the following environment:
- Ubuntu 20.04 LTS
- Python 3.8, 3.9
- Docker Server v19+
- Docker Client v18+
Model Zoo for Intel® Architecture v2.6.1
Features and bug fixes
- Update
ImageNetdataset preprocessing instructions here: datasets/imagenet
Supported Configurations
Intel Model Zoo 2.6.1 is validated on the following environment:
- Ubuntu 20.04 LTS
- Python 3.8, 3.9
- Docker Server v19+
- Docker Client v18+
Model Zoo for Intel® Architecture v2.6.0
TensorFlow Framework
- Support for TensorFlow
v2.7.0
New TensorFlow models
- N/A
Other features and bug fixes for TensorFlow models
- Updates to only use docker
--privilegedwhen required and check--cpuset -
- Except for
BERT LargeandWide and Deepmodels
- Except for
- Updated the ImageNet download link
- Fix
platform_util.pyfor systems with only one socket or subset of cores within a socket - Replace
USE_DAAL4PY_SKLEARNenv var withpatch_sklearn - Add error handling for when a frozen graph isn't passed for BERT large FP32 inference*
PyTorch Framework
- Support for PyTorch
v1.10.0andIPEXv1.10.0
New PyTorch models
GoogLeNetInference(FP32, BFloat16**)Inception v3Inference(FP32, BFloat16**)MNASNet 0.5Inference(FP32, BFloat16**)MNASNet 1.0Inference(FP32, BFloat16**)ResNet 50Inference(Int8)ResNet 50Training(FP32, BFloat16**)ResNet 101Inference(FP32, BFloat16**)ResNet 152Inference(FP32, BFloat16**)ResNext 32x4dInference(FP32, BFloat16**)ResNext 32x16dInference(FP32, Int8, BFloat16**)VGG-11Inference(FP32, BFloat16**)VGG-11with batch normalization Inference(FP32, BFloat16**)Wide ResNet-50-2Inference(FP32, BFloat16**)Wide ResNet-101-2Inference(FP32, BFloat16**)BERT baseInference(FP32, BFloat16**)BERT largeInference(FP32, Int8, BFloat16**)BERT largeTraining(FP32, BFloat16**)DistilBERT baseInference(FP32, BFloat16**)RNN-TInference(FP32, BFloat16**)RNN-TTraining(FP32, BFloat16**)RoBERTa baseInference(FP32, BFloat16**)Faster R-CNN ResNet50FPN Inference(FP32Mask R-CNNInference(FP32, BFloat16**)Mask R-CNNTraining(FP32, BFloat16**)Mask R-CNN ResNet50 FPNInference(FP32)RetinaNet ResNet-50 FPNInference(FP32)SSD-ResNet34Inference(FP32, Int8, BFloat16**)SSD-ResNet34Training(FP32, BFloat16**)DLRMInference(FP32, Int8, BFloat16**)DLRMTraining(FP32)
Other features and bug fixes for PyTorch models
DLRMandResNet 50documentation updates
Supported Configurations
Intel Model Zoo 2.6.0 is validated on the following environment:
- Ubuntu 20.04 LTS
- Python 3.8, 3.9
- Docker Server v19+
- Docker Client v18+
Intel Model Zoo v2.5.0
New Functionality
New Models
ML-Perf Transformer-LTTraining (FP32 and BFloat16)ML-Perf Transformer-LTInference (FP32, BFloat16 and INT8)ML-Perf 3D-UnetInference (FP32, BFloat16 and INT8)DIENTraining (FP32)DIENInference (FP32 and BFloat16)
Other features and bug fixes
- Added IPython Notebook with
BERTclassifier fine tuning using IMDb - Documentation for creating an
LPOTContainer with Intel® Optimizations for TensorFlow - Advanced documentation for wide deep large ds fp32 training
- Increase Unit testing coverage
DL Frameworks (TensorFlow)
- Support for TensorFlow
v2.6.0and TensorFlow Servingv2.6.0
DL Frameworks (PyTorch)
- Support for PyTorch
v1.9.0andIPEXv1.9.0
Supported Configurations
Intel Model Zoo 2.5.0 is validated on the following environment:
- Ubuntu 20.04 LTS
- Python 3.8
- Docker Server v19+
- Docker Client v18+
v2.4.0
New Functionality
- Added links to Intel oneContainer Portal
- Added documentation for running most workflows inside Intel® oneAPI AI Analytics Toolkit
- Experimental support for running workflows on
CentOS 8
DL Frameworks (TensorFlow)
- Support for TensorFlow
v2.5.0and TensorFlow Servingv2.5.1
Supported Configurations
Intel Model Zoo 2.4 is validated on the following environment:
- Ubuntu 20.04 LTS
- Python 3.8
- Docker Server v19+
- Docker Client v18+