@@ -15,13 +15,14 @@ better performance results for Int8 precision models with smaller batch sizes.
1515If you want to disable the use of TCMalloc, set ` --disable-tcmalloc=True `
1616when calling ` launch_benchmark.py ` and the script will run without TCMalloc.
1717
18- 1 . Clone the [ tensorflow/models] ( https://github.com/tensorflow/models ) as ` tensorflow-models ` and [ cocodataset/cocoapi] ( https://github.com/cocodataset/cocoapi ) repositories:
18+ 1 . Clone [ intelai/models ] ( https://github.com/intelai/models ) , [ tensorflow/models] ( https://github.com/tensorflow/models ) as ` tensorflow-models ` , and [ cocodataset/cocoapi] ( https://github.com/cocodataset/cocoapi ) repositories:
1919
2020```
21+ $ git clone https://github.com/IntelAI/models.git intel-models
2122$ git clone https://github.com/tensorflow/models.git tensorflow-models
2223$ cd tensorflow-models
2324$ git checkout 6c21084503b27a9ab118e1db25f79957d5ef540b
24- $ git apply models/object_detection/tensorflow/rfcn/inference/tf-2.0.patch
25+ $ git apply ../intel-models/ models/object_detection/tensorflow/rfcn/inference/tf-2.0.patch
2526$ git clone https://github.com/cocodataset/cocoapi.git
2627
2728```
@@ -70,9 +71,7 @@ The `--output_dir` is the location where the TF record files will be
7071located after the script has completed.
7172
7273```
73-
7474# We are going to use an older version of the conversion script to checkout the git commit
75- $ cd models
7675$ git checkout 7a9934df2afdf95be9405b4e9f1f2480d748dc40
7776
7877$ cd research/object_detection/dataset_tools/
@@ -98,18 +97,16 @@ $ git checkout master
9897
9998The ` coco_val.record ` file is what we will use in this inference example.
10099
101- 4 . Download the pretrained model:
102- Int8 Graph
100+ 4 . Download the pre-trained model (Int8 graph) :
101+
103102```
104103$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/rfcn_resnet101_int8_coco_pretrained_model.pb
105104```
106105
107- 5 . Clone the [ intelai/models] ( https://github.com/intelai/models ) repo
108- and then run the scripts for either batch/online inference performance or accuracy.
106+ 5 . Go to the Model Zoo benchmarks directory and run the scripts for either batch/online inference performance or accuracy.
109107
110108```
111- $ git clone https://github.com/IntelAI/models.git
112- $ cd models/benchmarks
109+ $ cd /home/<user>/intel-models/benchmarks
113110```
114111
115112Run for batch and online inference where the ` --data-location `
@@ -122,7 +119,7 @@ python launch_benchmark.py \
122119 --mode inference \
123120 --precision int8 \
124121 --framework tensorflow \
125- --docker-image intel/intel-optimized-tensorflow:2.1.0 \
122+ --docker-image intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
126123 --model-source-dir /home/<user>/tensorflow-models \
127124 --data-location /home/<user>/val/val2017 \
128125 --in-graph /home/<user>/rfcn_resnet101_int8_coco_pretrained_model.pb \
@@ -139,7 +136,7 @@ python launch_benchmark.py \
139136 --mode inference \
140137 --precision int8 \
141138 --framework tensorflow \
142- --docker-image intel/intel-optimized-tensorflow:2.1.0 \
139+ --docker-image intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
143140 --model-source-dir /home/<user>/tensorflow-models \
144141 --data-location /home/<user>/coco/output/coco_val.record \
145142 --in-graph /home/<user>/rfcn_resnet101_int8_coco_pretrained_model.pb \
@@ -151,19 +148,20 @@ Note that the `--verbose` or `--output-dir` flag can be added to any of the abov
151148to get additional debug output or change the default output location.
152149
1531506 . Log files are located at the value of ` --output-dir ` (or
154- ` models/benchmarks/common/tensorflow/logs ` if no path has been specified):
151+ ` intel- models/benchmarks/common/tensorflow/logs` if no path has been specified):
155152
156153Below is a sample log file tail when running for batch
157154and online inference:
158155```
159- Step 0: 11.4450089931 seconds
160- Step 10: 0.25656080246 seconds
156+ Step 0: ... seconds
157+ Step 10: ... seconds
158+ ...
159+ Step 460: ... seconds
160+ Step 470: ... seconds
161+ Step 480: ... seconds
162+ Step 490: ... seconds
163+ Avg. Duration per Step: ...
161164...
162- Step 460: 0.256786823273 seconds
163- Step 470: 0.267828941345 seconds
164- Step 480: 0.141321897507 seconds
165- Step 490: 0.127830982208 seconds
166- Avg. Duration per Step:0.195356227875
167165Ran inference with batch size -1
168166Log location outside container: {--output-dir}/benchmark_rfcn_inference_int8_20190416_182445.log
169167```
@@ -196,13 +194,14 @@ better performance results for FP32 precision models with smaller batch sizes.
196194If you want to disable the use of TCMalloc, set ` --disable-tcmalloc=True `
197195when calling ` launch_benchmark.py ` and the script will run without TCMalloc.
198196
199- 1 . Clone the [ tensorflow/models] ( https://github.com/tensorflow/models ) as ` tensorflow-models ` and [ cocodataset/cocoapi] ( https://github.com/cocodataset/cocoapi ) repositories:
197+ Clone [ intelai/models ] ( https://github.com/intelai/models ) , [ tensorflow/models] ( https://github.com/tensorflow/models ) as ` tensorflow-models ` , and [ cocodataset/cocoapi] ( https://github.com/cocodataset/cocoapi ) repositories:
200198
201199```
200+ $ git clone https://github.com/IntelAI/models.git intel-models
202201$ git clone https://github.com/tensorflow/models.git tensorflow-models
203202$ cd tensorflow-models
204203$ git checkout 6c21084503b27a9ab118e1db25f79957d5ef540b
205- $ git apply models/object_detection/tensorflow/rfcn/inference/tf-2.0.patch
204+ $ git apply ../intel-models/ models/object_detection/tensorflow/rfcn/inference/tf-2.0.patch
206205$ git clone https://github.com/cocodataset/cocoapi.git
207206```
208207
@@ -272,21 +271,17 @@ $ git checkout master
272271
273272The ` coco_val.record ` file is what we will use in this inference example.
274273
275- 4 . Download the pretrained model:
274+ 4 . Download the pre-trained model (FP32 graph) :
276275
277- FP32 Graph
278276```
279277$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/rfcn_resnet101_fp32_coco_pretrained_model.tar.gz
280278$ tar -xzvf rfcn_resnet101_fp32_coco_pretrained_model.tar.gz
281279```
282280
283-
284- 5 . Clone the [ intelai/models] ( https://github.com/intelai/models ) repo
285- and then run the scripts for either batch/online inference performance or accuracy.
281+ 5 . Go to the Model Zoo benchmarks directory and run the scripts for either batch/online inference performance or accuracy.
286282
287283```
288- $ git clone https://github.com/IntelAI/models.git
289- $ cd models/benchmarks
284+ $ cd /home/<user>/intel-models/benchmarks
290285```
291286
292287Run for batch and online inference where the ` --data-location `
@@ -299,7 +294,7 @@ python launch_benchmark.py \
299294 --mode inference \
300295 --precision fp32 \
301296 --framework tensorflow \
302- --docker-image intel/intel-optimized-tensorflow:2.1.0 \
297+ --docker-image intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
303298 --model-source-dir /home/<user>/tensorflow-models \
304299 --data-location /home/<user>/val/val2017 \
305300 --in-graph /home/<user>/rfcn_resnet101_fp32_coco_pretrained_model \
@@ -317,7 +312,7 @@ python launch_benchmark.py \
317312 --mode inference \
318313 --precision fp32 \
319314 --framework tensorflow \
320- --docker-image intel/intel-optimized-tensorflow:2.1.0 \
315+ --docker-image intel/intel-optimized-tensorflow:tensorflow-2.2-bf16-nightly \
321316 --model-source-dir /home/<user>/tensorflow-models \
322317 --data-location /home/<user>/coco/output/coco_val.record \
323318 --in-graph /home/<user>/rfcn_resnet101_fp32_coco_pretrained_model.pb \
@@ -329,12 +324,12 @@ Note that the `--verbose` or `--output-dir` flag can be added to any of the abov
329324to get additional debug output or change the default output location.
330325
3313266 . Log files are located at the value of ` --output-dir ` (or
332- ` models/benchmarks/common/tensorflow/logs ` if no path has been specified):
327+ ` intel- models/benchmarks/common/tensorflow/logs` if no path has been specified):
333328
334329Below is a sample log file tail when running for batch
335330and online inference:
336331```
337- Average time per step: 0.262 sec
332+ Average time per step: ... sec
338333Received these standard args: Namespace(accuracy_only=False, batch_size=1, benchmark_only=False, checkpoint='/checkpoints', data_location='/dataset', framework='tensorflow', input_graph=None, intelai_models='/workspace/intelai_models', mode='inference', model_args=[], model_name='rfcn', model_source_dir='/workspace/models', num_cores=-1, num_inter_threads=2, num_intra_threads=56, precision='fp32, socket_id=0, use_case='object_detection', verbose=True)
339334Received these custom args: ['--config_file=rfcn_pipeline.config']
340335Run model here.
0 commit comments