Skip to content

Commit 30cdb0d

Browse files
authored
Update README files with int8 docker image (#193)
* Update README files with int8 docker image * Update READMEs to make note of the image and how it was built.
1 parent c095fc2 commit 30cdb0d

File tree

5 files changed

+47
-34
lines changed

5 files changed

+47
-34
lines changed

benchmarks/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ dependencies to be installed:
2626
| Image Segmentation | TensorFlow | Mask R-CNN | Inference | [FP32](image_segmentation/tensorflow/maskrcnn/README.md#fp32-inference-instructions) |
2727
| Image Segmentation | TensorFlow | UNet | Inference | [FP32](image_segmentation/tensorflow/unet/README.md#fp32-inference-instructions) |
2828
| Language Translation | TensorFlow | Transformer Language| Inference | [FP32](language_translation/tensorflow/transformer_language/README.md#fp32-inference-instructions) |
29-
| Object Detection | TensorFlow | Fast R-CNN | Inference | [FP32](object_detection/tensorflow/fastrcnn/README.md#fp32-inference-instructions) |
29+
| Object Detection | TensorFlow | Fast R-CNN | Inference | [Int8](object_detection/tensorflow/fastrcnn/README.md#int8-inference-instructions) [FP32](object_detection/tensorflow/fastrcnn/README.md#fp32-inference-instructions) |
3030
| Object Detection | TensorFlow | R-FCN | Inference | [FP32](object_detection/tensorflow/rfcn/README.md#fp32-inference-instructions) |
3131
| Object Detection | TensorFlow | SSD-MobileNet | Inference | [FP32](object_detection/tensorflow/ssd-mobilenet/README.md#fp32-inference-instructions) |
3232
| Recommendation | TensorFlow | NCF | Inference | [FP32](recommendation/tensorflow/ncf/README.md#fp32-inference-instructions) |

benchmarks/image_recognition/tensorflow/inceptionv3/README.md

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -35,12 +35,7 @@ requires.
3535
$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/inceptionv3_int8_pretrained_model.pb
3636
```
3737

38-
4. Build a docker image using master of the official
39-
[TensorFlow](https://github.com/tensorflow/tensorflow) repository with
40-
`--config=mkl`. More instructions on
41-
[how to build from source](https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide#inpage-nav-5).
42-
43-
5. If you would like to run Inception V3 inference and test for
38+
4. If you would like to run Inception V3 inference and test for
4439
accuracy, you will need the ImageNet dataset. Benchmarking for latency
4540
and throughput do not require the ImageNet dataset.
4641

@@ -72,19 +67,19 @@ $ ll /home/myuser/datasets/ImageNet_TFRecords
7267
-rw-r--r--. 1 user 55292089 Jun 20 15:09 validation-00127-of-00128
7368
```
7469

75-
6. Next, navigate to the `benchmarks` directory in your local clone of
70+
5. Next, navigate to the `benchmarks` directory in your local clone of
7671
the [intelai/models](https://github.com/IntelAI/models) repo from step 1.
7772
The `launch_benchmark.py` script in the `benchmarks` directory is
7873
used for starting a benchmarking run in a optimized TensorFlow docker
7974
container. It has arguments to specify which model, framework, mode,
8075
precision, and docker image to use, along with your path to the ImageNet
81-
TF Records that you generated in step 5.
76+
TF Records that you generated in step 4.
8277

83-
Substitute in your own `--data-location` (from step 5, for accuracy
84-
only), `--in-graph` pretrained model file path (from step 3),
78+
Substitute in your own `--data-location` (from step 4, for accuracy
79+
only), `--in-graph` pretrained model file path (from step 3) and
8580
`--model-source-dir` for the location where you cloned the
8681
[tensorflow/models](https://github.com/tensorflow/models) repo
87-
(from step 2), and the name/tag for your docker image (from step 4).
82+
(from step 2).
8883

8984
Inception V3 can be run for accuracy, latency benchmarking, or throughput
9085
benchmarking. Use one of the following examples below, depending on
@@ -101,7 +96,7 @@ python launch_benchmark.py \
10196
--framework tensorflow \
10297
--accuracy-only \
10398
--batch-size 100 \
104-
--docker-image tf_int8_docker_image \
99+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
105100
--in-graph /home/myuser/inceptionv3_int8_pretrained_model.pb \
106101
--data-location /home/myuser/datasets/ImageNet_TFRecords \
107102
-- input_height=299 input_width=299
@@ -123,7 +118,7 @@ python launch_benchmark.py \
123118
--benchmark-only \
124119
--batch-size 1 \
125120
--socket-id 0 \
126-
--docker-image tf_int8_docker_image \
121+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
127122
--in-graph /home/myuser/inceptionv3_int8_pretrained_model.pb \
128123
--data-location /home/myuser/datasets/ImageNet_TFRecords \
129124
-- input_height=299 input_width=299 warmup_steps=50 steps=500
@@ -140,12 +135,18 @@ python launch_benchmark.py \
140135
--benchmark-only \
141136
--batch-size 128 \
142137
--socket-id 0 \
143-
--docker-image tf_int8_docker_image \
138+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
144139
--in-graph /home/myuser/inceptionv3_int8_pretrained_model.pb \
145140
--data-location /home/myuser/datasets/ImageNet_TFRecords \
146141
-- input_height=299 input_width=299 warmup_steps=50 steps=500
147142
```
148143

144+
The docker image (`intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl`)
145+
used in the commands above were built using
146+
[TensorFlow]([email protected]:tensorflow/tensorflow.git) master
147+
([e889ea1](https://github.com/tensorflow/tensorflow/commit/e889ea1dd965c31c391106aa3518fc23d2689954)) and
148+
[PR #25765](https://github.com/tensorflow/tensorflow/pull/25765).
149+
149150
Note that the `--verbose` or `--output-dir` flag can be added to any of the above commands
150151
to get additional debug output or change the default output location..
151152

benchmarks/image_recognition/tensorflow/resnet101/README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -22,12 +22,7 @@ an optimized version of the ResNet101 model code.
2222
$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/resnet101_int8_pretrained_model.pb
2323
```
2424

25-
3. Build a docker image using master of the official
26-
[TensorFlow](https://github.com/tensorflow/tensorflow) repository with
27-
`--config=mkl`. More instructions on
28-
[how to build from source](https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide#inpage-nav-5).
29-
30-
4. If you would like to run ResNet101 inference and test for
25+
3. If you would like to run ResNet101 inference and test for
3126
accurancy, you will need the full ImageNet dataset.
3227

3328
Register and download the
@@ -58,17 +53,16 @@ $ ll /home/myuser/datasets/ImageNet_TFRecords
5853
-rw-r--r--. 1 user 55292089 Jun 20 15:09 validation-00127-of-00128
5954
```
6055

61-
5. Next, navigate to the `benchmarks` directory in your local clone of
56+
4. Next, navigate to the `benchmarks` directory in your local clone of
6257
the [intelai/models](https://github.com/IntelAI/models) repo from step 1.
6358
The `launch_benchmark.py` script in the `benchmarks` directory is
6459
used for starting a benchmarking run in a optimized TensorFlow docker
6560
container. It has arguments to specify which model, framework, mode,
6661
precision, and docker image to use, along with your path to the ImageNet
67-
TF Records that you generated in step 4.
62+
TF Records that you generated in step 3.
6863

69-
Substitute in your own `--data-location` (from step 4, for accuracy
70-
only), `--in-graph` pre-trained model file path (from step 2),
71-
and the name/tag for your docker image (from step 3).
64+
Substitute in your own `--data-location` (from step 3, for accuracy
65+
only) and `--in-graph` pre-trained model file path (from step 2).
7266

7367
ResNet101 can be run for accuracy or performance benchmarking. Use one of
7468
the following examples below, depending on your use case.
@@ -86,7 +80,7 @@ $ python launch_benchmark.py \
8680
--framework tensorflow \
8781
--accuracy-only \
8882
--batch-size 100 \
89-
--docker-image tf_int8_docker_image \
83+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
9084
--data-location /home/myuser/dataset/FullImageNetData_directory \
9185
--in-graph=/home/myuser/resnet101_int8_pretrained_model.pb
9286
```
@@ -107,7 +101,7 @@ python launch_benchmark.py \
107101
--benchmark-only \
108102
--batch-size 1 \
109103
--socket-id 0 \
110-
--docker-image tf_int8_docker_image \
104+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
111105
--in-graph=/home/myuser/resnet101_int8_pretrained_model.pb \
112106
-- warmup_steps=50 steps=500
113107
```
@@ -123,11 +117,17 @@ python launch_benchmark.py \
123117
--benchmark-only \
124118
--batch-size 128 \
125119
--socket-id 0 \
126-
--docker-image tf_int8_docker_image \
120+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
127121
--in-graph=/home/myuser/resnet101_int8_pretrained_model.pb \
128122
-- warmup_steps=50 steps=500
129123
```
130124

125+
The docker image (`intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl`)
126+
used in the commands above were built using
127+
[TensorFlow]([email protected]:tensorflow/tensorflow.git) master
128+
([e889ea1](https://github.com/tensorflow/tensorflow/commit/e889ea1dd965c31c391106aa3518fc23d2689954)) and
129+
[PR #25765](https://github.com/tensorflow/tensorflow/pull/25765).
130+
131131
Note that the `--verbose` or `--output-dir` flag can be added to any of the above commands
132132
to get additional debug output or change the default output location..
133133

benchmarks/image_recognition/tensorflow/resnet50/README.md

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ $ python launch_benchmark.py \
5858
--mode inference \
5959
--batch-size=100 \
6060
--accuracy-only \
61-
--docker-image docker_image
61+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl
6262
```
6363
The log file is saved to the value of `--output-dir`.
6464

@@ -95,7 +95,7 @@ $ python launch_benchmark.py \
9595
--mode inference \
9696
--batch-size=128 \
9797
--benchmark-only \
98-
--docker-image docker_image \
98+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl
9999
-- warmup_steps=50 steps=500
100100
```
101101
The tail of the log output when the benchmarking completes should look
@@ -112,6 +112,12 @@ Ran inference with batch size 128
112112
Log location outside container: {--output-dir value}/benchmark_resnet50_inference_int8_20190223_180546.log
113113
```
114114

115+
The docker image (`intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl`)
116+
used in the commands above were built using
117+
[TensorFlow]([email protected]:tensorflow/tensorflow.git) master
118+
([e889ea1](https://github.com/tensorflow/tensorflow/commit/e889ea1dd965c31c391106aa3518fc23d2689954)) and
119+
[PR #25765](https://github.com/tensorflow/tensorflow/pull/25765).
120+
115121
Note that the `--verbose` or `--output-dir` flag can be added to any of the above commands
116122
to get additional debug output or change the default output location..
117123

benchmarks/object_detection/tensorflow/fastrcnn/README.md

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -255,8 +255,8 @@ $ python launch_benchmark.py \
255255
--mode inference \
256256
--socket-id 0 \
257257
--in-graph /home/myuser/fastrcnn_int8_pretrained_model.pb \
258-
--docker-image tf_int8_docker_image
259-
--benchmark-only
258+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
259+
--benchmark-only \
260260
-- number_of_steps=5000
261261
```
262262

@@ -270,13 +270,19 @@ python launch_benchmark.py \
270270
--precision int8 \
271271
--framework tensorflow \
272272
--socket-id 0 \
273-
--docker-image tf_int8_docker_image \
273+
--docker-image intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl \
274274
--model-source-dir /home/myuser/tensorflow/models \
275275
--data-location /home/myuser/coco_dataset/coco_val.record \
276276
--in-graph /home/myuser/fastrcnn_int8_pretrained_model.pb \
277277
--accuracy-only
278278
```
279279

280+
The docker image (`intelaipg/intel-optimized-tensorflow:PR25765-devel-mkl`)
281+
used in the commands above were built using
282+
[TensorFlow]([email protected]:tensorflow/tensorflow.git) master
283+
([e889ea1](https://github.com/tensorflow/tensorflow/commit/e889ea1dd965c31c391106aa3518fc23d2689954)) and
284+
[PR #25765](https://github.com/tensorflow/tensorflow/pull/25765).
285+
280286
5. The log file is saved to the value of `--output-dir`.
281287

282288
Below is a sample log file tail when running benchmarking for throughput

0 commit comments

Comments
 (0)